

TMSCA HIGH SCHOOL MATHEMATICS TEST #9 © FEBRUARY 1,2014

GENERAL DIRECTIONS

1. About this test:

- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- 2. All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA TMSCA

			2013 - 20	14 TMSCA	A High Scho	ol Mathem	atics Test	9		
1.	Evaluate (1.818) [*]	⁻¹ (0.510510	51) ⁻¹ .						
A)	3663	B)	5000	C)	100000	D)	6660	E)	459	
	3400		459		9231		187		5000	
2.	An electronics	shop ad	vertises a 2	5% off sale	with an add	itional 10%	b off if pur	chases are r	nade befor	e noon.
	Carrie checked	out at 1	0 am and u	sed a coupe	on that gave	her 15% of	f her total.	What is th	e total pero	cent
• >	discount on her	items?	(nearest %)	\mathbf{C}	5001	D)	1701	E)	5201	
A)	31%	D)	43%	C)	30%	D)	4/%	E)	33%	
3.	Events A and B	are ind	lependent ev	vents. If $p($	$A \cap B) = 0.1$	12 and $p($	A) = 3p(B)). Calculat	e $p(A \cup E)$	3).
A)	80%	B)	72%	C)	68%	D)	82%	E)	52%	
4.	On the illustrate	ion shov teral F(wn right the CDE. Find	area of qua FC. (neares	drilateral A	BCF is equ	al to the	A	22 cm B	
	<u> </u>							F	\rightarrow	× ^C
A)	28.0 cm	B) 27.3	cm C	c) 27.8 cm	D) 29.	3 cm	E) 28.6 c	m E	34 cm	$\Delta_{\rm D}$
5.	Find the point of	of inflec	tion for the	graph of th	e function	$f(x) = \frac{1}{3}x^3$	$-x^2$.			
A)	(1,0)	B)	(0,0)	C)	$\left(2,-\frac{4}{3}\right)$	D)	$\left(1,-\frac{2}{3}\right)$	E)	(2,0)	
6.	The point M is	the mic	dpoint of \overline{A}	\overline{B} . The co	ordinates of	the three p	oints are A	A(x,7), B(-9, y) and	
	M(1,14). Calo	culate x	x + y.							
A)	32	B)	6.5	C)	14.5	D)	21	E)	16	
7.	A construction 33 workers wor were trained?	compar ked on	ny pays \$13 a particular	l per day fo day and the	or trained wo	orkers and S the day wa	899 per day 18 \$4227, h	y for untrair now many o	ed worker f the worke	s. If ers
A)	3	B)	16	C)	30	D)	21	E)	12	
8.	x = 37 + y and	xy = 92	20. Calcula	te $x^2 + y^2$.						
A)	2289	B)	449	C)	2749	D)	3209	E)	3658	
9.	The base of a ri	ght con	e has a dian	neter of 18	cm and the	vertex angle	e is 37°. V	Vhat is the l	ateral surfa	ace area
	of the cone? (no	earest c	m^2)		2	C C				2
A)	802 cm^2	B)	1604 cm^2	C)	423 cm^2	D)	846 cm^2	E)	1225 cm	2
10.	What is the are	a of the	ellipse defi	ned by the e	equation $4x$	$x^{2} + y^{2} - 8x$	+4y-8=0	0.		
A)	4π units ²	B)	16π units ²	C)	32π units ²	D)	8π units ²	E)	6π units ²	2
11.	Given $f(x) = 2$	2x + 5 a	and $g(x) =$	$x^2 - 1$, find	g(f(x)).					
A)	$4x^2 + 24$	B)	$4x^2 + 20x +$	24 C)	$2x^2 + 3$	D) 4	$x^3 + 10x^2 +$	-6x + 15 E	(b) $2x^2 + 4$	1
12. A)	Find the <i>x</i> -coor $\frac{7}{3}$ E	dinate of 3) $\frac{9}{4}$	of the vertex	on the para $\frac{5}{2}$	abola shown D) 3	on the righ	nt. E) <u>11</u> 4		(3, 10	
							(-1,	-6).		

TMSCA 13-14 HSMA Test 9

- 13. Triangle *ABC* is a right triangle, and *BD* is the altitude to the hypotenuse. Which of the following pairs are complementary?
- A) $\angle ADB$, $\angle CDB$ B) $\angle BCD$, $\angle ABD$ C) $\angle BCD$, $\angle DBC$ D) $\angle ABC$, $\angle ACB$ E) $\angle BAD$, $\angle CBD$

14. What is the amplitude of $f(x) = 1.3 + 2.5\cos(3(x-5))$?

A) 1.3 B) 15 C) 2.5 D) 1.6 E) 5

15. Let x + y = 3, 4x + 7y = 22 and 11x + ky = 53. Find the value of k for which all three lines intersect in one point.

- A) 14.8 B) 17 C) -49 D) 60 E) -19
- 16. Simplify $\frac{x^2 2x 15}{x^2 + 5x + 6} \cdot \frac{x^2 x 6}{x^2 + 2x 15}$. A) $\frac{x - 5}{x + 5}$ B) $\frac{x - 5}{x + 3}$ C) $\frac{x + 3}{x - 5}$ D) $\frac{x + 2}{x + 3}$ E) $\frac{x + 3}{x + 5}$

17. Adam and Barney start together at the starting line of a 500 m track. Adam runs clockwise at an average rate of 5 meters per second. Barney runs counter clockwise at a rate of 7.5 meters per second. How far will Adam have run when they meet?

A) 300 m B) 250 m C) 240 m D) 200 m E) 320 m

18. Which of the following numbers appears in the 13th row of Pascal's triangle?A) 330B) 924C) 3432D) 1287

E) 1001

19. The dots in the diagram are 3 cm apart both vertically and horizontally. Calculate the area of the shaded region.
A) 0 units² = D) 117 units² = C) 81 units² = D) 00 units² = E) 27 units²

A) 9 units² B) 117 units² C) 81 units² D) 90 units² E) 27 units²

20. Mr. Meredith set up a scavenger hunt for his pre-calculus class. Group one travelled 200 yards on a bearing of 212°, then 350 yards on a bearing of 97°, then 275 yards on a bearing of 325° to retrieve their clues. How far were they from their point of origin? (nearest yard)

A) 716 yd B) 97 vd C) 306 vd D) 85 yd E) 507 vd 21. Simplify $(\sin x + \cos x)^2$. A) $2\sin x + 1$ **B**) 1 C) $\cos 2x$ $\sin 2x + 1$ D) -1 E) 22. Given the Fibonacci-type sequence 8, a, 6, b, c, d.... Calculate a+b+d. A) -8 B) 10 C) -2 D) 14 E) 16 23. A fair coin is tossed 7 times. What is the probability of at least 5 tails in a row? A) 3 B) C) 1 D) 5 E) 1 1 16 128 64 128 32 24. The point P has coordinates (2,1). P is reflected over the line y = -x, translated 2 units horizontally in the positive direction, then 5 units vertically in the positive direction to point S. Find the coordinates of S. C) (3,7)A) (4,4)**B**) (1,3)D) (-1, -2)E) (4,0)

25. Two lines that are in the same plane but never intersect are.A) ParallelB) SkewC) PerpendicularD) ConcurrentE) Bisectors

Copyright © 2013 TMSCA

TM 26. A)	ISCA 13-14 HS Two numbers a resulting numb 63	SMA Tes are in a r bers will B)	t 9 atio of 5:13. be in a ratio 87	If the first of 2:7. Fi	st is decrea nd the sur 112	ased by 5 an n of the two D)	d the secor numbers. 90	nd is increased E)	Page 3 l by 5, the 74	
27. A)	Jonah has 250 and one side be enclosure? 7813 m ²	m of fen ounded b B) 390	cing. He wa by a river as 6 m ²	ants to bui shown. W C) 2604	ld a rectar /hat is the m ²	ngular enclos maximum p D) 2500 m	sure with o bossible are 2^2 E	ne central div ea for the E) 5208 m ²	ision	
28. A)	The senior class drama club me How many pos 1392300	ss sponso mbers. 7 ssible cor B)	or wants to c The commit nmittees co 137700	hoose con tee will in uld she for C)	nmittee mo clude 4 atl rm? 3240	embers from hletes, 3 ban D)	18 athlete d members 77760	s, 15 band me s and 2 drama E)	mbers and 10 club members. 626535500	
29. A)	Each of four in are the odds the 2:1	atgers -3, at the pro B)	-2, -1 and 1 oduct of the 1:1	are writte numbers i C)	n on a sep s negative 1:3	parate card. ' ? D)	Two cards 1:2	are randomly E)	selected. What 3:1	
30. A)	A pizza shop h three-topping p 165	as 8 cho pizza for B)	ices of toppi \$12.00. Ho 240	ings and two w many p C)	vo types c ossible piz 112	of crust. The zza orders ar D)	y run a fall te there if a 120	l special offeri topping can b E)	ing a large, be repeated? 330	
31. A)	If $\log 9 = P$, an $\frac{PQ}{2}$	nd log5: B)	$= Q$, then $\log 2PQ$	$\log 0.6 =$ C)	$\log\left(\frac{\sqrt{H}}{Q}\right)$	$\left(\frac{\overline{D}}{\overline{D}}\right)$ D)	$\frac{P-2Q}{2}$	E)	$\frac{\sqrt{P}}{Q}$	
32.	What is the len	ngth of si	de <i>a</i> on the	diagram sl	nown righ	t?		r	45°	
A)	24	B) 4√6		C) 8√6		D) 12√2	E)	12√6	30°	
33.	Find the sum o number.	of all 2-di	git numbers	whose di	gits differ	by 5 and rev	versing the	digits results	in a square	
A)	220	B)	94	C)	125	D)	155	E)	172	
34.	Find the sum o	of the me	an, median a	and mode	for the nu	mbers 3, -4,	8, 7, 1, 9, -	-6 and 3.		
A)	45	B)	<u>69</u>	C)	<u>93</u>	D)	21	E)	<u>101</u>	
25	8		8	40 1	8	c 1	8 c		8	
35. A)	write the repea	ating dec B)	1mai 0.4242 11	42 base	11 21 21	D	ase five. 21	E)	21	
11)	$\frac{11}{220}$	2)	$\frac{11}{22}$	0)	$\frac{21}{220}$		$\frac{21}{202}$	L)	$\frac{21}{22}$	
36.	The harmonic : of A and B?	mean of	A and B is 2	26.8 and th	ne contrah	armonic mea	an is 27.9.	What is the a	rithmetic mean	
A)	27.34	B)	27.25	C)	27.33	D)	27.35	E)	27.37	
37.	37. Find AC. (nearest tenth centimeter) \bigwedge^{A}									
A)	9.9 cm	B) 13.8	cm (C) 15.3 cm	ı D	9) 14.9 cm	E) 14	.4 cm ¹	6 cm $16 cm4 cm$ C $12 cm$ B	

Copyright © 2013 TMSCA

A) 1 B) 2 C) 0 D) 0.5 E) 1.5 39. Given $mDC = 46^{\circ}$ and $m\angle AEB = 52^{\circ}$, calculate mAB° . A) 49° B) 58° C) 50° D) 48° E) 47° 40. Let $a_1 = 12$, $a_2 = 5$ and $a_2 = 2a_{n-1} - 3a_{n-2}$. Find a_5 . A) 147 B) -56 C) -339 D) -159 E) -33 41. What is Real value solution set to the inequality $3[2x+1] - 2 < 13$? A) $(-\infty, -3) \cup (2, \infty)$ B) $(-3, 2)$ C) $(-\infty, -2) \cup (3, \infty)$ D) $(-2, 3)$ E) $(-\infty, -3) \cup (-2, \infty)$ 42. How many distinct arrangements can be made from the letters "PARALLEL"? A) 720 B) 3360 C) 6720 D) 40320 E) 20160 43. Find the range, or ranges, of values of K for which $f(x) = Kx^2 - 4x + 5 - K$ has two distinct real roots. A) $1 < K < 4$ B) $K < 1$ and $K > 4$ C) $K < -6$ and D) $K < \frac{4}{5}$ E) $-6 < K < 2$ 44. Given that $(a+i)(2-bi)=7-i$, where $a_i b \in \mathbb{Z}$, find the value of $a+b$. A) 5.5 B) $\cdot 2$ C) 6.5 D) 4 E) 2 45. Simplify $a^4 \times b^5 + a^{-1} \times b^{-4} \times a^2 + b^2 + b^{-3}$. A) $\frac{a^5}{2}$ B) a^4b^2 C) a^7b D) a^7 E) a^5 46. Let A and B be the roots of $3x^2 - 4x - 7 = 0$. Find the value of $A^4 + 4A^3B + 6A^2B^3 + 4AB^3 + B^4$. A) 10000 B) $\frac{2401}{81}$ C) 10000 D) 256 E) 256 36. $\frac{256}{2401}$ 47. If $f(a) = g(a) = 0, f'(a)$ and $g'(a) exist and g'(a) \neq 0 then \lim_{x \to M} (\frac{f(x)}{g(x)}) = \frac{f'(a)}{g'(a)}. This is$	38. Given $y = \ln(2x-1)$, find the value of x for which $\frac{dy}{dx} = \frac{dx}{dy}$.							
39. Given $mDC = 46^{\circ}$ and $m∠AEB = 52^{\circ}$, calculate mAB° . A) 49° B) 58° C) 50° D) 48° E) 47° 40. Let $a_1 = 12^{\circ}$, $a_2 = 5$ and $a_n = 2a_{n-1} - 3a_{n-2}^{\circ}$. Find a_5° . A) 147 B) -56 C) -339 D) -159 E) -33 41. What is Real value solution set to the inequality $3 2x+1 - 2 < 13^{\circ}$ A) $(-\infty, -3) \cup (2, \infty)$ B) $(-3, 2)$ C) $(-\infty, -2) \cup (3, \infty)$ D) $(-2, 3)$ E) $(-\infty, -3) \cup (-2, \infty)$ 42. How many distinct arrangements can be made from the letters "PARALLEL"? A) 720 B) 3360 C) 6720 D) 40320 E) 20160 43. Find the range, or ranges, of values of K for which $f(x) = Kx^2 - 4x + 5 - K$ has two distinct real roots. A) $1 < K < 4$ B) $K < 1$ and $K > 4$ C) $K < -6$ and D) $K < \frac{4}{5}$ E) $-6 < K < 2$ 44. Given that $(a + i)(2 - bi) = 7 - i$, where $a, b \in \mathbb{Z}$, find the value of $a + b$. A) 5.5 B) -2 C) 6.5 D) 4 E) 2 45. Simplify $a^4 \times b^5 + a^4 \times b^4 \times a^2 + b^2 + b^3$. A) $\frac{a^5}{2}$ B) a^4b^2 C) a^7b D) a^7 E) a^5 46. Let A and B be the roots of $3x^2 - 4x - 7 = 0$. Find the value of $A^4 + 4A^3B + 6A^2B^2 + 4AB^3 + B^4$. A) 10000 B) $\frac{2401}{81}$ C) 10000 D) $\frac{256}{81}$ E) $\frac{256}{2401}$ 47. If $f(a) = g(a) = 0, f(a)$ and $g'(a)$ exist and $g'(a) \neq 0$ then $\lim_{t \to 0} \left(\frac{f'(a)}{f(x)}\right) = \frac{f'(a)}{g'(a)}$. This is	A) 1	B) 2	C) 0	D)	0.5	E) 1.5		
A) 49° B) 58° C) 50° D) 48° E) 47° 40. Let $a_1 = 12$, $a_2 = 5$ and $a_n = 2a_{n-1} - 3a_{n-2}$. Find a_5 . A) 147 B) -56 C) -339 D) -159 E) -33 41. What is Real value solution set to the inequality $3 2x+1 -2<13$? A) $(-\infty, -3) \cup (2, \infty)$ B) $(-3, 2)$ C) $(-\infty, -2) \cup (3, \infty)$ D) $(-2, 3)$ E) $(-\infty, -3) \cup (-2, \infty)$ 42. How many distinct arrangements can be made from the letters "PARALLEL"? A) 720 B) 3360 C) 6720 D) 40320 E) 20160 43. Find the range, or ranges, of values of K for which $f(x) = Kx^2 - 4x + 5 - K$ has two distinct real roots. A) $1 < K < 4$ B) $K < 1$ and $K > 4$ C) $K < -6$ and D) $K < \frac{4}{5}$ E) $-6 < K < 2$ 44. Given that $(a+i)(2-bi) = 7-i$, where $a, b \in \mathbb{Z}$, find the value of $a+b$. A) 5.5 B) -2 C) 6.5 D) 4 E) 2 45. Simplify $a^4 \times b^3 + a^{-1} \times b^{-4} \times a^2 \div b^2 \div b^{-3}$. A) $\frac{a^5}{b^2}$ B) a^5b^2 C) a^7b D) a^7 E) a^3 46. Let A and B be the roots of $3x^2 - 4x - 7 = 0$. Find the value of $A^4 + 4A^2B + 6A^2B^2 + 4AB^3 + B^4$. A) $\frac{10000}{81}$ B) $\frac{2401}{81}$ C) $\frac{10000}{2401}$ D) $\frac{256}{81}$ E) $\frac{256}{2401}$ 47. If $f(a) = g(a) = 0$, $f'(a)$ and $g'(a)$ exist and $g'(a) \neq 0$ then $\lim_{x \to w} \left(\frac{f(x)}{g(x)}\right) = \frac{f'(a)}{g'(a)}$. This is (A) Definition of Derivative (C) Rolle's Theorem (E) Fundamental Theorem of Calculus (B) Intermediate Value Theorem (D) L'Hopital's Rule 48. Given <i>GCF</i> (36, k) = 12 and <i>LCM</i> (36, k) = 252, find the value of k. A) 126 B) 48 C) 42 D) 63 E) 84 49. If $\frac{x + 8}{x + 8} = A\frac{B}{C}$, then $B = ?$ A) 64 B) 32 C) 48 D) 256 E) 128 50. If $y^5 = 122 + 597i$ and $y^4 = -119 + 120i$ and $y = a + bi$ then calculate $a + b$. A) -57 B) -17 C) -1 D) 0 E) 17 51. The diameters of the concentric circles on the right are 14 cm, 12 cm and 6 cm. If a dath hits the figure at random, what is the probability that it will land in the shaded area? (nearest %) A) 45% B) 27% C) 59\% D) 55% E) 73%	39. Given $\widehat{mDC} = 46$	\circ and $m \angle AEB =$	52°, calculate m_{1}^{2}	\widehat{AB} .		AB		
40. Let $a_1 = 12$, $a_2 = 5$ and $a_n = 2a_{n-1} - 3a_{n-2}$. Find a_5 . A) 147 B) -56 C) -339 D) -159 E) -33 41. What is Real value solution set to the inequality $3 2x+1 -2<13$? A) $(-\infty, -3) \cup (2,\infty)$ B) $(-3,2)$ C) $(-\infty, -2) \cup (3,\infty)$ D) $(-2,3)$ E) $(-\infty, -3) \cup (-2,\infty)$ 42. How many distinct arrangements can be made from the letters "PARALLEL"? A) 720 B) 3360 C) 6720 D) 40320 E) 20160 43. Find the range, or ranges, of values of K for which $f(x) = Kx^3 - 4x + 5 - K$ has two distinct real roots. A) $1 < K < 4$ B) $K < 1$ and $K > 4$ C) $K < -6$ and D) $K < \frac{4}{5}$ E) $-6 < K < 2$ 44. Given that $(a+i)(2-bi) = 7 - i$, where $a, b \in \mathbb{Z}$, find the value of $a+b$. A) 5.5 B) -2 C) 6.5 D) 4 E) 2 45. Simplify $a^4 \times b^3 \div a^{-1} \times b^{-4} \times a^2 \div b^2 \div b^{-3}$. A) $\frac{a^5}{b^2}$ B) a^2b^2 C) a^2b D) a^7 E) a^5 46. Let A and B be the roots of $3x^2 - 4x - 7 = 0$. Find the value of $A^4 + 4A^3B + 6A^2B^2 + 4AB^3 + B^4$. A) $\frac{10000}{81}$ B) $\frac{2401}{81}$ C) $\frac{10000}{2401}$ D) $\frac{256}{81}$ E) $\frac{256}{2401}$ 47. If $f(a) = g(a) = 0$, $f'(a)$ and $g'(a)$ exist and $g'(a) \neq 0$ then $\lim_{x \to w} \left(\frac{f(x)}{g(x)}\right) = \frac{f'(a)}{g'(a)}$. This is	A) 49° B)) 58°	C) 50°	D) 48°	E) 47°	$\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		
41. What is Real value solution set to the inequality $3 2x+1 -2<13$? A) $(-\infty, -3) \cup (2, \infty)$ B) $(-3, 2)$ C) $(-\infty, -2) \cup (3, \infty)$ D) $(-2, 3)$ E) $(-\infty, -3) \cup (-2, \infty)$ 42. How many distinct arrangements can be made from the letters "PARALLEL"? A) 720 B) 3360 C) 6720 D) 40320 E) 20160 43. Find the range, or ranges, of values of <i>K</i> for which $f(x) = Kx^2 - 4x + 5 - K$ has two distinct real roots. A) $1 < K < 4$ B) $K < 1$ and $K > 4$ C) $K < -6$ and D) $K < \frac{4}{5}$ E) $-6 < K < 2$ 44. Given that $(a+i)(2-bi)=7-i$, where $a, b \in \mathbb{Z}$, find the value of $a+b$. A) 5.5 B) -2 C) 6.5 D) 4 E) 2 45. Simplify $a^4 \times b^3 \div a^{-1} \times b^{-4} \times a^2 \div b^2 \div b^{-3}$. A) $\frac{a^5}{b^2}$ B) a^5b^2 C) a^7b D) a^7 E) a^5 46. Let <i>A</i> and <i>B</i> be the roots of $3x^2 - 4x - 7 = 0$. Find the value of $A^4 + 4A^3B + 6A^3B^2 + 4AB^3 + B^4$. A) $\frac{10000}{81}$ B) $\frac{2401}{81}$ C) $\frac{10000}{2401}$ D) $\frac{256}{81}$ E) $\frac{256}{2401}$ 47. If $f(a) = g(a) = 0, f'(a)$ and $g'(a)$ exist and $g'(a) \neq 0$ then $\lim_{x \to 0} \left(\frac{f(x)}{g(x)}\right) = \frac{f'(a)}{g'(a)}$. This is	40. Let $a_1 = 12$, $a_2 = A$) 147 B	5 and $a_n = 2a_{n-1}$) -56	$-3a_{n-2}$. Find a_5 . C) -339	D) -159	E) -33	DC		
A) 720 B) 3500 C) 6720 D) 40520 E) 20100 43. Find the range, or ranges, of values of K for which $f(x) = Kx^2 - 4x + 5 - K$ has two distinct real roots. A) $1 < K < 4$ B) $K < 1$ and $K > 4$ C) $K < -6$ and D) $K < \frac{4}{5}$ E) $-6 < K < 2$ 44. Given that $(a+i)(2-bi)=7-i$, where $a, b \in \mathbb{Z}$, find the value of $a+b$. A) 5.5 B) -2 C) 6.5 D) 4 E) 2 45. Simplify $a^4 \times b^3 \div a^{-1} \times b^{-4} \times a^2 \div b^2 \div b^{-3}$. A) $\frac{a^5}{b^2}$ B) a^5b^2 C) a^7b D) a^7 E) a^5 46. Let A and B be the roots of $3x^2 - 4x - 7 = 0$. Find the value of $A^4 + 4A^3B + 6A^2B^2 + 4AB^3 + B^4$. A) $\frac{10000}{81}$ B) $\frac{2401}{81}$ C) $\frac{10000}{2401}$ D) $\frac{256}{81}$ E) $\frac{256}{2401}$ 47. If $f(a) = g(a) = 0, f'(a)$ and $g'(a)$ exist and $g'(a) \neq 0$ then $\lim_{z \to u} \left(\frac{f(x)}{g(x)}\right) = \frac{f'(a)}{g'(a)}$. This is (A) Definition of Derivative (C) Rolle's Theorem (E) Fundamental Theorem of Calculus (B) Intermediate Value Theorem (D) L'Hopital's Rule 48. Given $GCF(36,k) = 12$ and $LCM(36,k) = 252$, find the value of k. A) 126 B) 48 C) 42 D) 63 E) 84 49. If $\frac{x-8}{x+8} + \frac{x+8}{x-8} = A\frac{B}{c}$, then $B = ?$ A) 64 B) 32 C) 88 D) 256 E) 128 50. If $y^5 = 122 + 597i$ and $y^4 = -119 + 120i$ and $y = a + bi$ then calculate $a + b$. A) -57 B) -17 C) -1 D) 0 E) 17 51. The diameters of the concentric circles on the right are 14 cm, 12 cm and 6 cm. If a dart hits the figure at random, what is the probability that it will land in the shaded area? (nearest %) A) 45% B) 27% C) 59\% D) 55\% E) 73\%	41. What is Real value solution set to the inequality $3 2x+1 -2 < 13$? A) $(-\infty, -3) \cup (2, \infty)$ B) $(-3, 2)$ C) $(-\infty, -2) \cup (3, \infty)$ D) $(-2, 3)$ E) $(-\infty, -3) \cup (-2, \infty)$ 42. How many distinct arrangements can be made from the letters "PARALLEL"?							
43. Find the range, of values of <i>K</i> for which $f(x) = Ax^{-4}x + 5 - K$ has two distinct real roots. A) $1 < K < 4$ B) $K < 1$ and $K > 4$ C) $K < -6$ and D) $K < \frac{4}{5}$ E) $-6 < K < 2$ 44. Given that $(a+i)(2-bi) = 7-i$, where $a, b \in \mathbb{Z}$, find the value of $a+b$. A) 5.5 B) -2 C) 6.5 D) 4 E) 2 45. Simplify $a^4 \times b^3 \div a^{-1} \times b^{-4} \times a^2 \div b^2 \div b^{-3}$. A) $\frac{a^5}{b^2}$ B) a^5b^2 C) a^7b D) a^7 E) a^5 46. Let <i>A</i> and <i>B</i> be the roots of $3x^2 - 4x - 7 = 0$. Find the value of $A^4 + 4A^3B + 6A^2B^2 + 4AB^3 + B^4$. A) $\frac{10000}{81}$ B) $\frac{2401}{81}$ C) $\frac{10000}{2401}$ D) $\frac{256}{81}$ E) $\frac{256}{2401}$ 47. If $f(a) = g(a) = 0, f'(a)$ and $g'(a)$ exist and $g'(a) \neq 0$ then $\lim_{x \to a} \left(\frac{f(x)}{g(x)}\right) = \frac{f'(a)}{g'(a)}$. This is (A) Definition of Derivative (C) Rolle's Theorem (E) Fundamental Theorem of Calculus (B) Intermediate Value Theorem (D) L'Hopital's Rule 48. Given <i>GCF</i> (36, k) = 12 and <i>LCM</i> (36, k) = 252, find the value of k . A) 126 B) 48 C) 42 D) 63 E) 84 49. If $\frac{x - 8}{x + 8} + \frac{x + 8}{x - 8} = A\frac{B}{C}$, then $B = ?$ A) 64 B) 32 C) 88 D) 256 E) 128 50. If $y^5 = 122 + 597i$ and $y^4 = -119 + 120i$ and $y = a + bi$ then calculate $a + b$. A) -57 B) -17 C) -1 D) 0 E) 17 51. The diameters of the concentric circles on the right are 14 cm, 12 cm and 6 cm. If a dart hits the figure at random, what is the probability that it will land in the shaded area? (nearest %) A) 45\% B) 27% C) 59% D) 55% E) 73\%	A) 720	D) 5500	$C = \frac{1}{2} $	D	40520	E = 20100		
44. Given that $(a+i)(2-bi)=7-i$, where $a, b \in \mathbb{Z}$, find the value of $a+b$. A) 5.5 B) -2 C) 6.5 D) 4 E) 2 45. Simplify $a^4 \times b^3 \div a^{-1} \times b^{-4} \times a^2 \div b^2 \div b^{-3}$. A) $\frac{a^5}{b^2}$ B) a^5b^2 C) a^7b D) a^7 E) a^5 46. Let A and B be the roots of $3x^2 - 4x - 7 = 0$. Find the value of $A^4 + 4A^3B + 6A^2B^2 + 4AB^3 + B^4$. A) $\frac{10000}{81}$ B) $\frac{2401}{81}$ C) $\frac{10000}{2401}$ D) $\frac{256}{81}$ E) $\frac{256}{2401}$ 47. If $f(a) = g(a) = 0, f'(a)$ and $g'(a)$ exist and $g'(a) \neq 0$ then $\lim_{x \to a} \left(\frac{f(x)}{g(x)}\right) = \frac{f'(a)}{g'(a)}$. This is (A) Definition of Derivative (C) Rolle's Theorem (E) Fundamental Theorem of Calculus (B) Intermediate Value Theorem (D) L'Hopital's Rule 48. Given <i>GCF</i> (36, k) = 12 and <i>LCM</i> (36, k) = 252, find the value of k . A) 126 B) 48 C) 42 D) 63 E) 84 49. If $\frac{x-8}{x+8} + \frac{x+8}{x-8} = A\frac{B}{C}$, then $B = ?$ A) 64 B) 32 C) 88 D) 256 E) 128 50. If $y^5 = 122 + 597i$ and $y^4 = -119 + 120i$ and $y = a + bi$ then calculate $a + b$. A) -57 B) -17 C) -1 D) 0 E) 17 51. The diameters of the concentric circles on the right are 14 cm, 12 cm and 6 cm. If a dart hits the figure at random, what is the probability that it will land in the shaded area? (nearest %) A) 45% B) 27% C) 59\% D) 55\% E) 73\%	A) $1 < K < 4$	B) $K < 1$ and	K > 4 C) $K < -$	f(x) = Kx - 4x -6 and D)	$K < \frac{4}{5}$	E) $-6 < K < 2$		
A) 5.5 B) -2 C) 6.5 D) 4 E) 2 45. Simplify $a^4 \times b^3 \div a^{-1} \times b^4 \times a^2 \div b^2 \div b^{-3}$. A) $\frac{a^5}{b^2}$ B) a^5b^2 C) a^7b D) a^7 E) a^5 46. Let A and B be the roots of $3x^2 - 4x - 7 = 0$. Find the value of $A^4 + 4A^3B + 6A^2B^2 + 4AB^3 + B^4$. A) $\frac{10000}{81}$ B) $\frac{2401}{81}$ C) $\frac{10000}{2401}$ D) $\frac{256}{81}$ E) $\frac{256}{2401}$ 47. If $f(a) = g(a) = 0, f'(a)$ and $g'(a)$ exist and $g'(a) \neq 0$ then $\lim_{x \to a} \left(\frac{f(x)}{g(x)}\right) = \frac{f'(a)}{g'(a)}$. This is (A) Definition of Derivative (C) Rolle's Theorem (E) Fundamental Theorem of Calculus (B) Intermediate Value Theorem (D) L'Hopital's Rule 48. Given $GCF(36,k) = 12$ and $LCM(36,k) = 252$, find the value of k. A) 126 B) 48 C) 42 D) 63 E) 84 49. If $\frac{x-8}{x+8} + \frac{x+8}{x-8} = A\frac{B}{C}$, then $B = ?$ A) 64 B) 32 C) 88 D) 256 E) 128 50. If $y^5 = 122 + 597i$ and $y^4 = -119 + 120i$ and $y = a + bi$ then calculate $a + b$. A) -57 B) -17 C) -1 D) 0 E) 17 51. The diameters of the concentric circles on the right are 14 cm, 12 cm and 6 cm. If a dart hits the figure at random, what is the probability that it will land in the shaded area? (nearest %) A) 45% B) 27% C) 59% D) 55\% E) 73\%	44. Given that $(a+i)$	(2-bi)=7-i, v	where $a, b \in \mathbb{Z}$, find	nd the value of a	+b.			
45. Simplify $a^4 \times b^3 \div a^{-1} \times b^{-4} \times a^2 \div b^2 \div b^{-3}$. A) $\frac{a^5}{b^2}$ B) a^5b^2 C) a^7b D) a^7 E) a^5 46. Let <i>A</i> and <i>B</i> be the roots of $3x^2 - 4x - 7 = 0$. Find the value of $A^4 + 4A^3B + 6A^2B^2 + 4AB^3 + B^4$. A) $\frac{10000}{81}$ B) $\frac{2401}{81}$ C) $\frac{10000}{2401}$ D) $\frac{256}{81}$ E) $\frac{256}{2401}$ 47. If $f(a) = g(a) = 0$, $f'(a)$ and $g'(a)$ exist and $g'(a) \neq 0$ then $\lim_{x \to a} \left(\frac{f(x)}{g(x)}\right) = \frac{f'(a)}{g'(a)}$. This is (A) Definition of Derivative (C) Rolle's Theorem (E) Fundamental Theorem of Calculus (B) Intermediate Value Theorem (D) L'Hopital's Rule 48. Given <i>GCF</i> (36, k) = 12 and <i>LCM</i> (36, k) = 252, find the value of k . A) 126 B) 48 C) 42 D) 63 E) 84 49. If $\frac{x-8}{x+8} + \frac{x+8}{x-8} = A\frac{B}{C}$, then $B = ?$ A) 64 B) 32 C) 88 D) 256 E) 128 50. If $y^5 = 122 + 597i$ and $y^4 = -119 + 120i$ and $y = a + bi$ then calculate $a + b$. A) -57 B) -17 C) -1 D) 0 E) 17 51. The diameters of the concentric circles on the right are 14 cm, 12 cm and 6 cm. If a dart hits the figure at random, what is the probability that it will land in the shaded area? (nearest %) A) 45% B) 27% C) 59\% D) 55\% E) 73\%	A) 5.5	B) -2	C) 6.5	D)	4	E) 2		
46. Let A and B be the roots of $3x^2 - 4x - 7 = 0$. Find the value of $A^4 + 4A^3B + 6A^2B^2 + 4AB^3 + B^4$. A) $10000 \over 81$ B) $2401 \over 81$ C) $10000 \over 2401$ D) $256 \over 81$ E) $256 \over 2401$ 47. If $f(a) = g(a) = 0$, $f'(a)$ and $g'(a)$ exist and $g'(a) \neq 0$ then $\lim_{x \to a} \left(\frac{f(x)}{g(x)}\right) = \frac{f'(a)}{g'(a)}$. This is (A) Definition of Derivative (C) Rolle's Theorem (E) Fundamental Theorem of Calculus (B) Intermediate Value Theorem (D) L'Hopital's Rule 48. Given $GCF(36, k) = 12$ and $LCM(36, k) = 252$, find the value of k. A) 126 B) 48 C) 42 D) 63 E) 84 49. If $\frac{x-8}{x+8} + \frac{x+8}{x-8} = A\frac{B}{C}$, then $B = ?$ A) 64 B) 32 C) 88 D) 256 E) 128 50. If $y^5 = 122 + 597i$ and $y^4 = -119 + 120i$ and $y = a + bi$ then calculate $a + b$. A) -57 B) -17 C) -1 D) 0 E) 17 51. The diameters of the concentric circles on the right are 14 cm, 12 cm and 6 cm. If a dart hits the figure at random, what is the probability that it will land in the shaded area? (nearest %) A) 45% B) 27% C) 59% D) 55% E) 73%	45. Simplify $a^4 \times b^3$. A) $\frac{a^5}{b^2}$	$ \begin{array}{c} \div a^{-1} \times b^{-4} \times a^2 \div b \\ \text{B)} a^5 b^2 \end{array} $	$b^2 \div b^{-3}$. C) $a^7 b$	D)	a^7	E) <i>a</i> ⁵		
47. If $f(a) = g(a) = 0$, $f'(a)$ and $g'(a)$ exist and $g'(a) \neq 0$ then $\lim_{x \to a} \left(\frac{f(x)}{g(x)}\right) = \frac{f'(a)}{g'(a)}$. This is (A) Definition of Derivative (C) Rolle's Theorem (E) Fundamental Theorem of Calculus (B) Intermediate Value Theorem (D) L'Hopital's Rule 48. Given $GCF(36,k) = 12$ and $LCM(36,k) = 252$, find the value of k. A) 126 B) 48 C) 42 D) 63 E) 84 49. If $\frac{x-8}{x+8} + \frac{x+8}{x-8} = A\frac{B}{C}$, then $B = ?$ A) 64 B) 32 C) 88 D) 256 E) 128 50. If $y^5 = 122 + 597i$ and $y^4 = -119 + 120i$ and $y = a + bi$ then calculate $a + b$. A) -57 B) -17 C) -1 D) 0 E) 17 51. The diameters of the concentric circles on the right are 14 cm, 12 cm and 6 cm. If a dart hits the figure at random, what is the probability that it will land in the shaded area? (nearest %) A) 45% B) 27% C) 59% D) 55% E) 73%	46. Let <i>A</i> and <i>B</i> be the A) $\frac{10000}{81}$	e roots of $3x^2 - 4$ B) $\frac{2401}{81}$	$x-7=0$. Find the C $\frac{1000}{240}$	the value of $A^4 + \frac{1}{100}$ D)	$4A^{3}B + 6A^{2}B^{2} + 4A^{3}B$ $\frac{256}{81}$	$AB^{3} + B^{4}$. E) $\frac{256}{2401}$		
(A) Definition of Derivative (C) Rolle's Theorem (E) Fundamental Theorem of Calculus (B) Intermediate Value Theorem (D) L'Hopital's Rule 48. Given $GCF(36,k) = 12$ and $LCM(36,k) = 252$, find the value of k. A) 126 B) 48 C) 42 D) 63 E) 84 49. If $\frac{x-8}{x+8} + \frac{x+8}{x-8} = A\frac{B}{C}$, then $B = ?$ A) 64 B) 32 C) 88 D) 256 E) 128 50. If $y^5 = 122 + 597i$ and $y^4 = -119 + 120i$ and $y = a + bi$ then calculate $a + b$. A) -57 B) -17 C) -1 D) 0 E) 17 51. The diameters of the concentric circles on the right are 14 cm, 12 cm and 6 cm. If a dart hits the figure at random, what is the probability that it will land in the shaded area? (nearest %) A) 45% B) 27% C) 59% D) 55% E) 73%	47. If $f(a) = g(a) =$	47. If $f(a) = g(a) = 0$, $f'(a)$ and $g'(a)$ exist and $g'(a) \neq 0$ then $\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \frac{f'(a)}{g'(a)}$. This is						
(B) Intermediate Value Theorem (D) L'Hopital's Rule 48. Given $GCF(36,k) = 12$ and $LCM(36,k) = 252$, find the value of k. A) 126 B) 48 C) 42 D) 63 E) 84 49. If $\frac{x-8}{x+8} + \frac{x+8}{x-8} = A\frac{B}{C}$, then $B = ?$ A) 64 B) 32 C) 88 D) 256 E) 128 50. If $y^5 = 122 + 597i$ and $y^4 = -119 + 120i$ and $y = a + bi$ then calculate $a + b$. A) -57 B) -17 C) -1 D) 0 E) 17 51. The diameters of the concentric circles on the right are 14 cm, 12 cm and 6 cm. If a dart hits the figure at random, what is the probability that it will land in the shaded area? (nearest %) A) 45% B) 27% C) 59% D) 55% E) 73%	(A) Definition of Der	rivative (C) Rolle's Theorem	n (E)	Fundamental Theore	em of Calculus		
48. Given $GCF(36,k) = 12$ and $LCM(36,k) = 252$, find the value of k. A) 126 B) 48 C) 42 D) 63 E) 84 49. If $\frac{x-8}{x+8} + \frac{x+8}{x-8} = A\frac{B}{C}$, then $B = ?$ A) 64 B) 32 C) 88 D) 256 E) 128 50. If $y^5 = 122 + 597i$ and $y^4 = -119 + 120i$ and $y = a + bi$ then calculate $a + b$. A) -57 B) -17 C) -1 D) 0 E) 17 51. The diameters of the concentric circles on the right are 14 cm, 12 cm and 6 cm. If a dart hits the figure at random, what is the probability that it will land in the shaded area? (nearest %) A) 45% B) 27% C) 59% D) 55% E) 73%	(B) Intermediate Val	ue Theorem (D) L'Hopital's Rul	e				
A) 126 B) 48 C) 42 D) 63 E) 84 49. If $\frac{x-8}{x+8} + \frac{x+8}{x-8} = A\frac{B}{C}$, then $B = ?$ A) 64 B) 32 C) 88 D) 256 E) 128 50. If $y^5 = 122 + 597i$ and $y^4 = -119 + 120i$ and $y = a + bi$ then calculate $a + b$. A) -57 B) -17 C) -1 D) 0 E) 17 51. The diameters of the concentric circles on the right are 14 cm, 12 cm and 6 cm. If a dart hits the figure at random, what is the probability that it will land in the shaded area? (nearest %) A) 45% B) 27% C) 59% D) 55% E) 73%	48. Given $GCF(36, k)$	(x) = 12 and LCM	(36, k) = 252, fin	nd the value of k.				
49. If $\frac{x-8}{x+8} + \frac{x+8}{x-8} = A\frac{B}{C}$, then $B = ?$ A) 64 B) 32 C) 88 D) 256 E) 128 50. If $y^5 = 122 + 597i$ and $y^4 = -119 + 120i$ and $y = a + bi$ then calculate $a + b$. A) -57 B) -17 C) -1 D) 0 E) 17 51. The diameters of the concentric circles on the right are 14 cm, 12 cm and 6 cm. If a dart hits the figure at random, what is the probability that it will land in the shaded area? (nearest %) A) 45% B) 27% C) 59% D) 55% E) 73%	A) 126	B) 48	C) 42	D)	63	E) 84		
A) 64 B) 32 C) 88 D) 256 E) 128 50. If $y^5 = 122 + 597i$ and $y^4 = -119 + 120i$ and $y = a + bi$ then calculate $a + b$. A) -57 B) -17 C) -1 D) 0 E) 17 51. The diameters of the concentric circles on the right are 14 cm, 12 cm and 6 cm. If a dart hits the figure at random, what is the probability that it will land in the shaded area? (nearest %) A) 45% B) 27% C) 59% D) 55% E) 73%	49. If $\frac{x-8}{x+8} + \frac{x+8}{x-8} = \frac{x+8}{x-8}$	$A\frac{B}{C}$, then $B = ?$						
50. If $y^5 = 122 + 597i$ and $y^4 = -119 + 120i$ and $y = a + bi$ then calculate $a + b$.A) -57B) -17C) -1D) 0E) 1751. The diameters of the concentric circles on the right are 14 cm, 12 cm and 6 cm. If a dart hits the figure at random, what is the probability that it will land in the shaded area? (nearest %)A) 45%B) 27%C) 59%D) 55%E) 73%	A) 64	B) 32	C) 88	D)	256	E) 128		
 51. The diameters of the concentric circles on the right are 14 cm, 12 cm and 6 cm. If a dart hits the figure at random, what is the probability that it will land in the shaded area? (nearest %) A) 45% B) 27% C) 59% D) 55% E) 73% 	50. If $y^5 = 122 + 597i$ A) -57	and $y^4 = -119 - B$ -17	+120 <i>i</i> and $y = a - C$ -1	+ <i>bi</i> then calculat D)	te $a+b$.	E) 17		
	51. The diameters of figure at random,A) 45% B)	the concentric cir what is the proba 27%	The release on the right ability that it will C) 59%	are 14 cm, 12 cm land in the shade D) 55%	and 6 cm. If a da d area? (nearest % E) 73%	rt hits the		

Copyright © 2013 TMSCA

Page 4

TMSCA 13-14 HSMA Test 9

52. The points A(-8,0), B(1,12), C(12,3) and D(3,-5) are plotted and connected to form the convex quadrilateral ABCD. What is the area of this quadrilateral? B) 173 units^2 D) 170 units^2 E) 87 $units^2$ A) 153 units^2 C) 213 units^2 53. Let $f(x) = ax^5 + bx^3 + cx - 8$ and f(-6) = 27. Calculate f(6). D) -43 A) -35 B) 19 C) -27 E) 51 54. $11_2 + 11_3 + 11_4 + 11_5 + 11_6 + 11_7 + 11_8 + 11_9 = __{10}$. **B**) 44 C) 52 D) 66 A) 88 E) 72 55. $\int_{-2}^{4} (kx^2 + 5x + 2) dx = 114$. What is the value of k? A) 3 B) 2 C) -3 D) -1 E) 1 56. What is the area of a regular hexagon in terms of the length, s, of one side? B) $\frac{s^2\sqrt{3}}{6}$ C) $\frac{s^2\sqrt{3}}{4}$ $\frac{3s^2\sqrt{3}}{4}$ $\frac{3s^2\sqrt{3}}{2}$ E) $\frac{2s^2\sqrt{3}}{2}$ A) D) 57. If $\begin{pmatrix} 2 & a & b \\ 1 & 0 & -3 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ b \end{pmatrix}$, find the value of *a*. A) -5 B) $\frac{10}{3}$ C) 7 D) $\frac{8}{3}$ E) -6 58. Simplify to the nearest ten-thousandth place: $1+(1.5)+\frac{(1.5)^2}{2!}+\frac{(1.5)^3}{3!}+\frac{(1.5)^4}{4!}+\dots$ A) 4.4817 B) 0.4055 C) 0.0707 D) 0.9975 E) 0.0262 59. How many solutions are there to 6x + 8y = 218 such that $x, y \in \mathbb{Z}^+$. A) 8 B) 27 C) 7 D) 36 E) 9 48 cm 60. Find PQ. 60 cm D) $24\sqrt{5}$ cm E) $36+8\sqrt{5}$ cm $\frac{160}{3}$ cm B) 54 cm C) $\frac{164}{3}$ cm

2013-2014 TMSCA Mathematics Test Nine Answers

1. A	21. E	41. B
2. B	22. E	42. B
3. C	23. B	43. B
4. E	24. B	44. D
5. D	25. A	45. D
6. A	26. D	46. D
7. C	27. E	47. D
8. D	28. E	48. E
9. A	29. B	49. D
10. D	30. B	50. C
11. B	31. D	51. D
12. A	32. B	52. B
13. B	33. D	53. D
14. C	34. B	54. C
15. B	35. E	55. A
16. A	36. D	56. D
17. D	37. E	57. D
18. D	38. E	58. A
19. C	39. B	59. E
20. D	40. B	60. A

42. PARALLEL has 8 letters, the A 4. The root-mean-square of the lengths of the bases of a trapezoid is the length of the occurs twice and the L occurs three times, segment that bisects the area. so the number of distinct arrangements is $\frac{8!}{2! \cdot 3!} = 3360$. $PQ = \sqrt{\frac{34^2 + 22^2}{2}} \approx 28.6 \text{ cm}$ 49. For numbers $\frac{a}{b} + \frac{b}{a} = A\frac{B}{C}$, 8. x - y = 37, so $(x-y)^2 = x^2 - 2xy + y^2 = 1369$ $B = (a-b)^2$. For this problem, $x^{2} + y^{2} = (x - y)^{2} + 2xy = 3209$ $(x-8-x-8)^2 = 256$. 19. $A = \frac{8+12}{2} - 1 = 9$ units² in the diagram, 53. Let g(x) = f(x) + 8, g(x) is an odd function, so g(-6) = -g(6). and since the linear scaling is 1:3, the scaling for area will be 1:9. So the area of g(-6) = 27 + 8 = 35 and -35 = f(6) + 8, the shaded region will be $9(9) = 81 \text{ cm}^2$. so f(6) = -43. 23. With 7 coin tosses, each possibility 58. This is the MacClaurin series has a probability of $\left(\frac{1}{2}\right)^{\prime} = \frac{1}{128}$. Let H be expansion of $f(x) = e^x$. $e^{1.5} \approx 4.4817$. a group of 5 heads, all the possibilities for 60. The length of the segment parallel to at least 5 heads in a row are: the bases that passes through the Htt tHt ttH intersections of the diagonals of a Hth htH Hht trapezoid is the harmonic mean of the thH hhH lengths of the bases. So, So, probability of at least 5 heads in a row $PQ = \frac{2(48)(60)}{(48+60)} = \frac{160}{3}$ cm. is $8\left(\frac{1}{128}\right) = \frac{1}{16}$. 30. If toppings can be repeated, then the number of possible topping choice combinations is $_{8+3-1}C_3 = 120$. Multiply by the 2 types of crust for 240 choices. 36. The arithmetic mean of two numbers is also the arithmetic mean of their harmonic and contraharmonic means. So the arithmetic mean of A and B is 27.35. 38. $\frac{dy}{dx} = \frac{dx}{dy}$ when $\frac{dy}{dx} = \pm 1$. $\frac{dy}{dx}(\ln(2x-1)) = \frac{2}{2x-1}.$ $\frac{2}{2x-1} = \pm 1$ when x = 0.5, or 1.5, and 0.5 is outside the domain of the original function.