

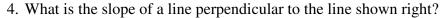
TMSCA HIGH SCHOOL MATHEMATICS TEST # 7 © JANUARY 12, 2013

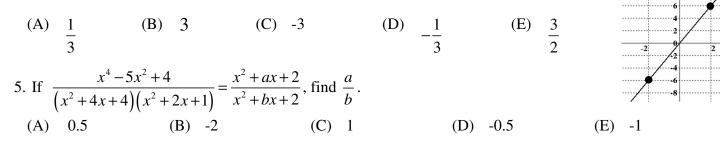
GENERAL DIRECTIONS

1. About this test:

- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- 2. All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA 2012-2013 TMSCA High School Mathematics Test


1. Evaluate: $3+7\times2-4\div2\cdot16+17$ (A) 145 (B) 2 (C) 5 (D) 55 (E) 145


2. A craft store offers a weekly coupon for 40% off of one regularly priced item. Joan buys baking supplies that are all on sale for 25% off for the week. She buys four cookie cutters with a regular price of \$1.99 each, two cans of colored icing with a regular price of \$4.59 each, a decorator kit with a regular price of \$22.50 and pays tax at a rate of 6.25% on her whole purchase. What is the smallest bill she can have if she can use the coupon on an item of her choice?

(A) \$29.73 (B) \$23.78 (C) \$23.22 (D) \$28.00 (E) \$26.36

3. The distance driven on a road trip is directly proportional to the rate at which the car is moving. On Andy's vacation, the when the rate is 68 mph, the distance driven is 170 miles. How far will he drive if he raises his rate to 75 mph? (D) 262.5 miles (E) 175 miles

(A) 225 miles (B) 150 miles (C) 187.5 miles

- 6. Triangle ABC is a right triangle, and BD is the altitude to the hypotenuse. Which of the following pairs are complementary?
- $\angle ADB$, $\angle CDB$ (B) $\angle BCD$, $\angle ABD$ (C) $\angle BAD$, $\angle ABD$ (A) (D) $\angle ABC, \angle ACB$ (E) $\angle BAD$, $\angle CBD$

7. Find the lateral surface area of the regular, right pentagonal prism shown right.

(A) 844 cm^2 (B) 1425 cm^2 (C) 520 cm^2 (D) 654 cm^2 (E) 640 cm^2

8. The third term of an arithmetic sequence is -2, and the sum of the first fourteen terms is 98. Find the common difference.

(D) -6

- (A) 4 (B) -2 (C) 2
- 9. How many faces does an icosidodecahedron have?
 - (A) 10 (B) 32 (D) 36 (E) 20 (C) 12
- 10. Three books by Jane Austen need to be shelved together on a shelf containing ten books. How many arrangements of books are possible?
 - (A) 120960 (B) 241920 (C) 40320 (D) 720 (E) 30240 3 6 1 (((() a))

11. If
$$g(x) = x - 1$$
 and $f(x) = x^3$, find $g(f(x+2))$.
(A) $x^3 + 6x^2 + 12x + 8$ (B) $x^3 + 2x^2 + 4x + 7$ (C) $x^3 + 7$ (D) $x^3 + 6x^2 + 12x + 7$ (E) $x^3 + 3x^2 + 3x + 7$

12. A quadrilateral is inscribed in a circle. The measures of two angles opposite each other are $(x^2 - 12x)^{\circ}$ and

- $(3x-10)^{\circ}$. Find the measure of the larger angle.
- (A) 160° (B) 90° (C) 47° (D) 20° (E) 133°

15 cm

6 cm

(E) -4

13.Mrs. Jones is fifteen years older than twice the age of her son. Twenty years ago, her age was nine times that of her son. Find her age.					
(A) 75	(B) 65	(C) 50	(D) 25	(E) 20	
14. Determine the per	find of $y = \frac{2}{3}\sin(3x - x)$	7)+8.			
(A) $\underline{2\pi}$	(B) 2π	(C) $\underline{3\pi}$	(D) $\frac{\pi}{2}$	(E) $\frac{7\pi}{3}$	
			-	3	
15. There are two valu	ues of k for which det	$\begin{bmatrix} k+1 & -5 \\ -2 & -k \end{bmatrix} = -22$. The	ne sum of those two v	values is	
(A) 0	(B) 1	(C) 10	(D) -1	(E) -10	
16. When $2x^2 - x + k$	is divided by $(x+1)$	the remainder is <i>m</i> . Fi	nd the value of <i>m</i> in t	terms of k.	
(A) $m = k - 2$	(B) $m = k + 3$	(C) $m = k + 1$	(D) $m = k - 1$	(E) $m = k + 2$	
17. On triangle <i>ABC</i> , shorter of the two		m, and $m \angle A = 60^\circ$. T	here are two possible	e lengths for \overline{AC} . The	
(A) 1.2 cm	(B) 5 cm	(C) 2.3 cm	(D) 3 cm	(E) 12.7 cm	
18.In the rectangle sh	nown right, what is $a + a$	b in terms of x?		a°	
	90 – <i>x</i> (C) 180 +		(E) $360 - x$	x° b°	
	wing series converges (B) $\xrightarrow{\infty}$ $n+1$		(D) <u>~</u> 3	(E) _∞	
$\sum_{n=1}^{n} \left(\frac{3}{2}\right)$	$\sum_{n=0}^{n+1} \frac{n+1}{2n+1}$	(C) $\sum_{n=1}^{\infty} \frac{n}{1000(n+1)}$	$\sum_{n=0}^{\infty} \frac{3}{2^n}$	(E) $\sum_{n=1}^{\infty} \log n$	
20. Let the region <i>R</i> b	be bounded in the first	quadrant by the x-axis	, y-axis and the grap	n of $f(x) = \cos 2x$. Find	
		e complete revolution (0) 2.47			
(A) 0.5	(B) 1.23	(C) 2.47	(D) 0.39	(E) 3.14	
(A) Bisectors	ame plane that never i (B) Skew	(C) Perpendicular	(D) Parallel	(E) Collinear	
22. Myrtle has eight different colors of markers. In how many ways can she package 4 markers to sell if she can repeat colors?					
(A) 495	(B) 220	(C) 210	(D) 70	(E) 330	
23. What are the coord	dinates of the other ze	ro of the parabola show	wn right?	(0, 35)	
(A) (-3, 0) (B)	(-2.5, 0) (C) (-2.7	5,0) (D) (-2,0)	(E) (3,0)	(-4, -42)	
24. In a class with 88 students, 32 study economics, 28 study history and 39 do not study either subject. How					
many students stu (A) 49	dy both subjects? (B) 80	(C) 11	(D) 21	(E) 39	
25. Let $f(x) = x^3 + 3x + 1$, and $g(x) = x^2$. Find $g(f'(3))$.					
(A) 1369	(B) 900	(C) 225	(D) 1225	(E) 1521	

-	meter of the octag	jon?	-	30°	
(A) $20\sqrt{3} - 20$	(B) $40\sqrt{3}$	(C) $40 + 20\sqrt{3}$	(D) $20 + 20\sqrt{3}$ (E) 60		
27. Find the total are (A) 246.62	ea of the two regions (B) 72.17	ons enclosed by the original (C) 13.85	curves $y = x^3 - 9x + 13$ and (D) 250.62	y = 3x + 11. (E) 72.50	
		er makes with the wa	hes per second. When the ll is changing at a rate of (D) 1.0032		
29. Let $a_1 = 7$, $a_2 =$ (A) 59		$-2a_{n-1}$. Find a_6 . (C) -142	(D) -66	(E) 25	
30. Find the sum of	the series to the n	earest ten thousandtl	h: $7 - \frac{7^3}{6} + \frac{7^5}{120} - \frac{7^7}{5040} \dots$		
(A) 0.7539	(B) 1.9459	(C) 0.8451	(D) 0.6570	(E) 0.1219	
31. Two fair six-side (A) 5:31	ed dice are rolled. (B) 6:1	What are the odds (C) 35:1	that the sum of the top face (D) 5:1	s is a deficient number? (E) 31:5	
32. If $\frac{x+7}{x-7} + \frac{x-7}{x+7} =$		$\overline{7}$, then $B =$			
(A) 0	(B) 14	(C) 28	(D) 49	(E) 196	
33. The Real value s	solution set of $ 3x $	+1 + 3 < 11 is			
$(A) \left\{ x \middle -\frac{7}{3} < x < 3 \right\}$	(B) $\begin{cases} x \\ -3 < x < -1 \end{cases}$	$\frac{7}{3} \begin{cases} \text{(C)} \\ x \neq x < -3 \end{cases} \cup$	$\int \left\{ x > \frac{7}{3} \right\} $ (D) $\left\{ x \middle -3 < x < \frac{7}{3} \right\}$	$\begin{cases} \text{(E)} \left\{ x \middle \left\{ x < -\frac{7}{3} \right\} \cup \left\{ x > 3 \right\} \right\} \end{cases}$	
			ong would it take three wor	kers to paint a fence twice	
(A) 4 hours	(B) 8 hours	each paint at the same (C) 6 hours		(E) 9 hours	
35. The chords \overline{AC} a positive value of		inside $\bigcirc O$ at <i>P</i> . If	$AP=9$, $CP=x^2$, $BP=x^2$	+1 and $DP = 6x$, find the	
(Å) 4	(B) 6	(C) 2	(D) 3	$(E) 5 \qquad (f)$	
36. Using the triangle and congruent semicircles shown right, find the area of the triangle in terms of the radius of the semicircles.					
(A) $8r^2\sqrt{6}$	(B) $16r^2\sqrt{6}$	(C) $20r^2$	(D) $5r^2$	(E) $2r^2\sqrt{6}$	
37. Find the sum of (A) -3.28125	the infinite series (B) -1.6	: -1.2-0.9-0.675 (C) -2.4	-0.50625 (D) -4.8	(E) 3.6	
38. The area of the ellipse with the equation $9x^2 + 25y^2 - 36x + 150y = -36$ is					
(A) 25π	(B) 15 <i>π</i>	(C) $\frac{25\pi}{9}$	(D) 9 <i>π</i>	(E) $\frac{9\pi}{25}$	
39. Find the acute ar	ngle that the line	3x + 4y = 18 forms w	ith the x-axis to the nearest	hundredth of a degree.	

39. Find the acute angle that the line 3x + 4y = 18 forms with the *x*-axis to the nearest hundredth of a degree. (A) 41.41° (B) 48.59° (C) 33.69° (D) 36.87° (E) 12.52°

Page 3 of 6

	$) = \underline{\qquad} will p$ (B) $3\sin(x+\pi)$ (E) $3\sin(\pi(x-1))$	(C) $\sin(\pi(x-1))$	+3				
	41. If $f(x) = \tan x$ then $\lim_{h \to 0} \frac{f(\pi+h) - f(\pi)}{h}$ is						
(A) 0	(B) 1	(C) undefined	(D) -1	(E) $\sqrt{3}$			
42. If $(1-i)^9 = a + bi$, (A) 32	then $a+b =$ (B) 0	(\mathbf{C}) on $\overline{\mathbf{C}}$	(D) = 512	(F)			
(A) 52	(B) 0	(C) $32\sqrt{2}$	(D) -512	(E) $-32\sqrt{2}$			
) $18\sqrt{2}$ (C) 2'	7 54	(E) $9\sqrt{2}$	6			
44. If $\int_{-2}^{4} f(x) dx = 10$.	.5 then $\int_{-2}^{4} (f(x) + 3) dx$	dx =		B 4 C 5 D			
(A) 21	(B) 13.5	(C) 22.5	(D) 28.5	(E) 16.5			
45. Simplify: $(3-2\sqrt{-1})^{-1}$	$\left(-8\right)\left(1+3\sqrt{-50}\right)$						
(A) $-117 + 41i\sqrt{2}$	(B) $-117 - 41i\sqrt{2}$	(C) $123 + 41i\sqrt{2}$	(D) 123	(E) $123 - 41i\sqrt{2}$			
46. Solve: $\log_3 x + \log_3 x$	$g_3(x-6) = 3$						
(A) 9	(B) -0.464	(C) 6	(D) -3	(E) 6.46			
47. The volume of an (A) $\frac{\sqrt{3}}{2}$ cm ²	octahedron with an ed (B) $\frac{8\sqrt{2}}{3}$ cm ²		(D) $2\sqrt{3}$ cm ²	(E) $\frac{8\sqrt{3}}{2}$ cm ²			
48. Set $S = \{1, 2, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,$,6,7}. How many 4-e	element subsets of set S	S are there?				
(A) 16	(B) 35	(C) 128	(D) 49	(E) 28			
49. If $y^2 = 5 - 12i$ and	$y^3 = -9 - 46i$ where	y = a + bi then $a + b =$					
(A) -38	(B) 5	(C) -62	(D) 1	(E) 6			
50. At which of the following values of x is the function at right discontinuous? $x+5, x \le -3$							
(A) -3 (B)	-1 (C) 0	(D) 1	(E) 2	$f(x) = \begin{cases} x+5, & x \le -3 \\ x -1, & -3 < x < 2 \\ x^2+2, & x \ge 2 \end{cases}$			
51. The distances between the hash marks () are equal. Find $P + Q + R$.							
	-3	Q 	R				
	-3 (B) -3			(E) 0.6			
52. If $\frac{7x+13}{x^2+2x-3} = \frac{A}{x+3} + \frac{B}{x-1}$, then $AB =$							
(A) 7 $x^2 + 2x - 3^2 x - 3^2$	$+3^{+}x-1^{+}$ (B) -6	(C) 10	(D) -3	(E) 6			

- 53. The letters in the world TUESDAY are arranged in a line. How many of different arrangements are possible that begin with D and end with S? (A) 21 (B) 35 (C) 24 (D) 120 (E) 720 54. $\frac{\cot^2 t}{\csc t} =$ (E) $\csc t - \sin t$ (B) $\sec t - \cos t$ (C) $\csc t + \sin t$ (D) $\sec t - \sin t$ (A) $\sec t + \cos t$ 55. How many petals does the graph of the curve $r = 2\cos 6\theta$ have? (A) 3 (B) 12 (C) 24 (D) 2 (E) 6 56. $\frac{x^{2} + 3x - 10}{x^{2} + 4x + 4} \div \frac{x^{2} + 10x + 25}{x + 2} =$ (A) $\frac{x - 2}{x^{2} + 7x + 10}$ (B) $\frac{x - 2}{x^{2} + 4x + 4}$ (C) $\frac{x^{2} + 3x - 10}{x^{2} + 7x + 10}$ (D) $\frac{x + 2}{x^{2} + 7x + 10}$ (E) $\frac{x^{2} + 3x + 10}{x^{2} + 7x + 10}$
- 57. A belt joins two pulleys shown. If the smaller pulley rotates at 72 rpm, then the larger pulley is rotating at _____rpm.

(A) 12.22 (B) 130.91 (C) 10.28 (D) 39.60 (E) 32.29

22 40

58. Over time, it is observed that the arrival time for people attending an exhibition is normally distributed with a mean of 3 hours and 48 minutes after the door opens and the standard deviation was 52 minutes. If the doors open at 9 am, at what time will 90% of the people have arrived?

(A)	11:49 am	(B)	1:55 pm	(C) 1:15 pm	(D)	12:09 pm	(E)	2:15 pm
59. The Platonic solid with pentagonal faces is the								
(A)	Tetrahedron	(B)	Octahedron	(C) Dodecahedron	(D)	Cube	(E)	Icosahedron
60. How many positive perfect cubes are factors of $(3!)(4!)(7!)$?								
(A)	5	(B)	7	(C) 4	(D)	6	(E)	8

2012-2013 TMSCA High School Mathematics Test 7 Key

1. B	21. D	41. B
2. D	22. E	42. B
3. C	23. B	43. B
4. D	24. C	44. D
5. E	25. B	45. C
6. C	26. D	46. A
7. D	27. E	47. C
8. C	28. A	48. B
9. B	29. C	49. D
10. B	30. D	50. E
11. D	31. D	51. B
12. E	32. E	52. C
13. B	33. D	53. D
14. A	34. B	54. E
15. D	35. C	55. B
16. B	36. A	56. A
17. D	37. D	57. D
18. A	38. B	58. B
19. D	39. D	59. C
20. B	40. E	60. D

2012 – 2013 TMSCA Solutions Mathematics Test Seven

$$\begin{array}{c} 13 + 14 - 2 + 16 + 17 - 17 - 22 + 17 - 22 \\ \hline 10.75(4 + 139 + 2 + 4.59) - 0.6(2.5) \left[-1.052 + 28.00 \\ 3. (70 - 66k - 8 + 2.5 - 4 - 4.75 - 2.5 + 187.5 \text{ miles} \\ 4. w = \frac{-6}{-2-2} - 3 + 1.4 \text{ m} - \frac{1}{3} \\ 5. \left(\frac{k^2 - 1}{(k^2 + 1)^2} + \frac{k^2 - 3k + 2}{2}, \frac{w^2 - 3k + 2}{2}$$