

TMSCA HIGH SCHOOL MATHEMATICS

TEST #3 ©

NOVEMBER 9,2013

GENERAL DIRECTIONS

- 1. About this test:
- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- 2. All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA TMSCA

1.	Evaluate $\frac{11 \cdot (7!) \div}{7 + 2^3}$	8 .							
	998	(B)	462	(C)	770	(D)	66	(E)	149
2. At Hobby Stop the price of a tube of oil paint is \$7.85 and the price of a paint brush is \$3.95. Crafty Carl has a 30% off coupon to use for the paint and the brushes are on sale for 15% off. If Carl buys 7 tubes of paint and 4 brushes, what will his cost be after the 8.5% sales tax has been applied?									
` ′	\$56.31	` ′	\$20.46	` /	\$51.90	(D)	\$62.68	(E)	\$57.77
	3. On any workday the probability that Karen will remember her lunch is 90% and the probability that she will leave work on time is 70%. If these are independent events, what is the probability that on she will leave work late and forget her lunch on the same day?								
(A)	63%	(B)	30%	(C)	37%	(D)	3%	(E)	6.3%
	4. If $m \angle A + m \angle B + m \angle C = 180^\circ$ and $m \angle C + m \angle D = 180^\circ$, then $m \angle A + m \angle B + m \angle C = m \angle C + m \angle D$ is an example of property.								
` /	Distributive	` ′	Transitive	(C)	Associative	(D)	Commutative	(E)	Closure
	Which of the follo 720	_	is a triangular nui 1440		1540	(D)	1080	(E)	2700
6.	An equation of the	e line t	through (-5,11) p	perper	ndicular to $2x + 7$	y = 35	5 is		
(A)	7x - 2y = -46	(B)	2x + 7y = 67	(C)	7x - 2y = 24	(D)	2x + 7y = 1	(E)	7x - 2y = -57
 7. Four workers can paint a wall in 20 minutes. How long will it take six workers at the same individual rate to paint a wall three times as long and three times as high? (A) 60 min (B) 180 min (C) 40 min (D) 90 min (E) 120 min 									
` ′	If $x - y = 7$ and x	, ,		(-)		()		\	
	343	(B)		(C)	406	(D)	385	(E)	427
9. A little motorboat travelling with the current can make the 48 mile trip from A to B in 5 hours. The same boat takes 10 hours to make the return trip against the current. Find the speed of the current if the boat would have a constant speed in still water.									
	2.4 mh ⁻¹		3.6 mh ⁻¹	(C)	4.8 mh ⁻¹	(D)	7.2 mh ⁻¹	(E)	9.6 mh ⁻¹
10. Simplify $\frac{2x^2 + x - 6}{x^2 + 4x - 5} \cdot \frac{x^3 - 3x^2 + 2x}{4x^2 - 6x}$.									
	$\frac{x^2 - 2x}{x + 10}$	(B)	$\frac{x^2-4}{x+5}$	(C)	$\frac{x^2-4}{2x+10}$	(D)	$\frac{x-2}{2x+10}$	(E)	$\frac{x^2 - 2x}{x + 5}$
11. (A)	Find the total surfa 592 ft ²	ace are	ea of a right cone 1222 ft ²	given (C)	the radius of the 718 ft ²		is 12 ft. and the v 1916 ft ²		angle is 36°. 843 ft ²
12. Find the area of a circle defined by the equation $x^2 + y^2 - 6x + 4y - 5 = 0$.									
(A)	$3\sqrt{2}$	(B)	18π	(C)	36π	(D)	$3\pi\sqrt{2}$	(E)	9π
13. If $5^x \cdot 25^{2y} = 1$ and $3^{5x} \cdot 9^y = \frac{1}{9}$, find the value of $x + y$.									
(A)	$\frac{4}{9}$	(B)	$\frac{1}{9}$	(C)	$-\frac{4}{}$	(D)	$\frac{1}{3}$	(E)	_1_
	9		9		9		3		3

- 14. If f(x) = x+1 and $g(x) = \frac{3}{x}$, find $g(f^{-1}(x))$.

- (A) $\frac{x+3}{x}$ (B) $\frac{x+3}{x-1}$ (C) $\frac{3}{x+3}$ (D) $\frac{3}{x-1}$
- 15. A hiker leaves position A and travels for 2 km on bearing 160° followed by 3 km on a bearing of 200°. How far is the final destination from position A?
- (A) 4.71 km
- (B) 4.36 km
- (C) 3.61 km
- (D) 5 km
- (E) 4.03 km
- 16. A piece of wire 5.4 m long is bent to form the sides of a closed triangle. Find the largest possible area for such a triangle.

- (B) $\frac{81\sqrt{3}}{100}$ m² (C) $\frac{243\sqrt{3}}{25}$ m² (D) $\frac{729\sqrt{3}}{100}$

- 17. $\frac{\sin 2\theta}{1 + \cos 2\theta} =$
- (B) $\tan \theta$
- (C) $\sec 2\theta$
- (D) $\tan 2\theta$
- (E) $\cot 2\theta$

- 18. Classify the graph of $x^2 6xy + 9y^2 2y + 1 = 0$.
- (A) Circle
- (B) Cartoid
- (C) Hyperbola
- (D) Ellipse
- (E) Parabola

- 19. Evaluate $\sum_{k=0}^{\infty} \frac{2}{3} \left(-\frac{3}{5}\right)^{k+2}$.
- (A) $\frac{3}{20}$
- (B) $-\frac{1}{4}$ (C) $\frac{3}{5}$
- (E)
- 20. What is the coefficient of the 5th term in the binomial expansion of $(2x-5)^8$?
- (A) -224000
- (B) 700000
- (C) 1400000
- (D) 224000
- (E) -700000

- 21. $A = \begin{bmatrix} 3 & 5 \\ -2 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 7 \\ 3 & -4 \end{bmatrix}$, so det $AB = \begin{bmatrix} 3 & 4 \\ 3 & 4 \end{bmatrix}$
- (A) -376
- (C) -234
- (D) -377
- (E) 203

- 22. $\lim_{x \to \frac{1}{2}} \frac{6x^2 17x + 7}{2x^3 7x^2 + 3x} =$ (A) $\underline{1}$ (B)

- (C) $\frac{22}{5}$ (D) $\frac{13}{4}$
- does not exist
- 23. Which of the following has an amplitude of 4, period of $\frac{2}{3}$, phase shift of -1 and a displacement of -2?
- $-1 + \frac{1}{4}\sin(3\pi x 2\pi)$
- (C) $\frac{1}{3} + 4\sin(-\pi + 2\pi)$
- (E) $\frac{1}{4} + 3\sin(-\pi x + 2\pi)$

- (B) $-2 + 4\sin(3\pi x + 3\pi)$
- (D) $4 \sin(-2\pi x 3\pi)$
- 24. If $(3-5i)^2 (2+5i)^3 = a+bi$, then a+b=
- (A) 126
- (B) -253
- (C) -45
- (D) 161
- (E) -47

- 25. Let f be continuous on the closed interval [a,b] and differentiable on the open interval (a,b). If f(a) = f(b) then there is at least one number c such that f'(c) = 0. The name of this theorem is
- (A) Mean Value Theorem
- (C) Sandwich Theorem
- Fundamental Theorem of Calculus (E)

- (B) Fundamental Theorem of Algebra
- (D) Rolle's Theorem
- 26. If the dots in the diagram shown right are 1 in apart both vertically and horizontally, find the area of the shaded region.

- (A)
- (B) 11
- (C) 12
- 10 (D)
- (E) 16
- 27. Find the surface area of a regular dodecahedron with a side length of 3 inches. (nearest in²)
- (B) 32 in^2
- (C) 207 in^2
- (D) 80 in^2
- (E) 59 in^2
- 28. Given that the "1" at the top of Pascal's triangle is the 0th row, _____ is in the 10th row of Pascal's triangle?
- (A) 210
- (B) 84
- (C) 56
- (D) 252
- (E) 70
- 29. A cube is formed by folding the net shown and the numbers on opposite faces are multiplied. What is the sum of the products?

- (A) 161
- (B) 157
- **(C)** 169
- (D) 173
- (E) 159

- 30. A bag of marbles contains 6 black, 8 red and 11 yellow marbles. Three are chosen one at a time without replacement. What is the probability that they will be yellow, yellow and black in that order?
- (A) 121 2300
- 132

- 726 15625
- 31. A dart lands at random within the picture shown to the right. What are the odds the dart will land in the shaded region?
- (A) 0.3019
- (B) 0.4324
- (C) 0.3581
- (D) 0.6981
- 0.5579

- 32. $(0.1818...)^{-1} + (0.444...)^{-1} (0.833...)^{-1} =$

- 33. P and Q are the roots of $x^3 + 2x^2 4x 8 = 0$. Evaluate $P^4 4P^3Q + 6P^2Q^2 4PQ^3 + Q^4$.
- $(A) \quad 0$
- (C) 16
- 256
- 34. Two fair 7-sided dice are thrown and the numbers on the bottoms of both dice are added together. What is the probability that the sum will be less than 12?
- (A) 49

- 35. Find AC. (nearest ¼ inch)
- (A) $6\frac{3}{4}$, (B) $9\frac{1}{2}$, (C) 8" (D) $8\frac{3}{4}$, (E) $7\frac{1}{2}$,

36. 400 gallons of 89 octane gasoline is obtained by mixing 87 octane and 92 octane gasoline. How much of the 87 octane gasoline is used?

- (A) 200 gal
- (B) 240 gal
- (C) 250 gal
- (D) 260 gal
- (E) 280 gal

37. The slope of the tangent to $4x^2 - 9y^2 = 19$ at (-5,3) is

- (D) $-\frac{20}{27}$
- (E)

38. The area of triangle ABC is 109 m². Given that $m\angle A = 50^{\circ}$ and AB = 13 m find AC. (nearest $\frac{1}{10}$ m)

- (A) 10.9 m
- (B) 16.8 m
- (C) 15.5 m
- (D) 26.1 m
- (E) 21.9 m

39. How many elements are in $\{\theta \mid 6\cos^2\theta - \cos\theta = 2, \theta \in (-\pi, \pi)\}$?

- $(A) \quad 0$
- (B) 6
- (C) 3
- (D) 2
- (E) 4

40. The polar graph of $r = 6\cos 5\theta$ has _____ petals.

- (A) 3
- (B) 4
- (C) 5
- (D) 6
- (E) 12

41. $1 - \frac{1}{3} + \frac{1}{9} - \frac{1}{27} + \frac{1}{81} \dots =$

- (E)

42. Ranger Bob walks out 70 ft. from the base of a large tree. If the angle of elevation from the ground where Bob stands to the top of the tree is 76°, how tall is the tree? (nearest foot)

- (A) 281 ft
- (B) 66 ft
- (C) 68 ft
- (E) 103 ft

43. What is the area of the **unshaded** region on the illustration shown? (nearest cm²)

- (A) 45 cm^2
- (B) 66 cm^2
- (C) 68 cm^2
- (D) 90 cm^2
- (E) 132 cm^2

44. If $A = \ln 2$, $B = \ln 3$ and $C = \ln 5$ then $\ln 18.75 =$

- (A) 2BC-2A

- (D) B + 2C 2A
- (E)

45. If y = 9 - x and xy = 16 then |x - y| =(A) $3\sqrt{7}$ (B) $\sqrt{17}$

- (C) 4
- (D) 7
- (E)

46. Simplify $a^{-3} \div b^3 \times a^{-5} \div b^{-5} \times a^{-3} \div b^5$.

47. Find the sum of the solutions to the equation $|x^2 - 3x| = -4x + 6$.

- (A) 6
- (B) 0
- (D) 4
- (E) -1

48. Carol invested \$7000 in an account for five years. Her returns are shown in the table below. What was her average interest rate for the 5 years?

	Year	1	2	3	4	5
	Interest	3.5% gain	3.8% loss	2.7% gain	1.5% loss	5.9% gain
(A)	2.40%	(B) 1.36%	(C) 6.66	\sqrt{M} (D)	1.43%	(E) 1.30%

- 49. Given $f(x) = ax^6 + bx^4 + cx^2 + x$ and f(4) = 87 find f(-4).
- (A) 83 (B) 79 (C) 91 (D) 87 (E) 95
- 50. A circle with a radius of 24 cm has a center at the point Q. How far from Q is a chord of the circle that has a length of 10 cm?
- (A) $\sqrt{119}$ (B) $4\sqrt{11}$ (C) $\sqrt{551}$ (D) $8\sqrt{11}$ (E) $2\sqrt{119}$
- 51. Find the angle between the vectors $v_1 = \langle -17, 3 \rangle$ and $v_2 = \langle 11, 9 \rangle$. (nearest degree)
- (A) 49° (B) 41° (C) 131° (D) 147° (E) 33°
- 52. Find the area of the region defined by the inequalities $x \ge 0$, $y \ge 0$ and $y \le 3\cos(2x)$.
- (A) 4.5 (B) 0 (C) 6 (D) 3 (E) 1.5
- 53. The function $f(x) = x^3 + 3x^2 + 3$ has a point of inflection _____.
- (A) (0,3) (B) (1,1) (C) (-1,-1) (D) (2,-1) (E) (-1,5)
- 54. Classify the graph of $3x^2 + 8xy + 4y^2 7 = 0$.
- (A) Circle (B) Ellipse (C) Parabola (D) Hyperbola (E) Cartoid
- 55. $\tan \theta > 0$ and $\sin \theta < 0$. Where will θ terminate?
- (A) QI (B) QII (C) QIII (D) QIV (E) y-axis
- 56. Find the area of the convex quadrilateral with vertices (2,7), (4,1), (1,-5) and (-6,2).
- (A) 24 (B) 60.5 (C) 27.5 (D) 59.5 (E) 30.5
- 57. How many solution (x, y) are there to the equation 5x + 4y = 256 where x and y are both positive integers?
- (A) 9 (B) 10 (C) 11 (D) 12 (E) 13
- 58. Given $y = x^{x^2}$. Find $D_x y$.
- (A) $x^{x^2+1}(1+2\ln x)$ (B) $x+2x\ln x$ (C) $2x^{x^2+2}$ (D) $x^2+2\ln x$ (E) $x+\ln(2x)$
- 59. What is the measure of one interior angle of a regular dodecagon?
- (A) 144° (B) 120° (C) 140° (D) 136° (E) 150°
- 60. Given $b \in \mathbb{Z}^+$, $bbb_{b+1} = _{10}$
- (A) b(b+2) (B) $(b+1)^3$ (C) $b(b^2+3b+3)$ (D) b(b+1)(b+2) (E) $(b+1)^2$

2013-2014 TMSCA Mathematics Test Three Answers

1. B	21. D	41. D
2. A	22. C	42. A
3. D	23. B	43. A
4. B	24. D	44. D
5. C	25. D	45. B
6. E	26. D	46. B
7. E	27. A	47. C
8. C	28. A	48. E
9. A	29. C	49. B
10. C	30. C	50. C
11. D	31. B	51. C
12. B	32. B	52. E
13. E	33. E	53. E
14. D	34. A	54. D
15. A	35. C	55. C
16. B	36. B	56. B
17. B	37. D	57. D
18. E	38. E	58. A
19. A	39. E	59. E
20. B	40. C	60. C

2013-2014 TMSCA Mathematics Test Three Select Solutions

8.
$$x^3 - y^3 = (x - y)[(x - y)^2 + 3xy]$$

= 7(49+3(3)) = 406

13.
$$5^x \cdot 5^{4y} = 5^0$$
 and $3^{5x} \cdot 3^{2y} = 3^{-2}$ so $x + 4y = 0$ and $5x + 2y = -2$ added together the equations yield $6x + 6y = -2 \rightarrow x + y = -\frac{1}{3}$

15.
$$v_1 = \langle 2\cos 160, \sin 160 \rangle = \langle x_1, y_1 \rangle$$

 $v_2 = \langle 3\cos 200, 3\sin 200 \rangle = \langle x_2, y_2 \rangle$
 $d = \sqrt{(x_1 + x_2)^2 + (y_1 + y_2)^2}$

17.
$$\frac{\sin 2\theta}{1 + \cos 2\theta} = \frac{2\sin \theta \cos \theta}{1 + \cos^2 \theta - 1} = \frac{\sin \theta}{\cos \theta} = \tan \theta$$

18. Given
$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$

If $B^2 - 4AC = 36 - 4(1)(9) = 0$

The graph is a parabola

26.
$$I = \#$$
 of interior points
 $P = \#$ of perimeter points

$$A = \frac{2I + P}{2} - 1 = \frac{2(4) + 14}{2} - 1 = 10$$

33.
$$x^2(x+2)-4(x+2)=(x+2)^2(x-2)$$

Roots are 2 and -2.
 $(P-Q)^4=(-2-2)^4=256$

38.
$$109 = \frac{1}{2}(13)(AC)\sin 50$$

$$AC \approx 21.9$$
39. $6\cos^2 \theta - \cos \theta - 2 = 0$
 $(3\cos \theta - 2)(2\cos \theta + 1) = 0$

$$\cos \theta = \frac{2}{3} \text{ and } \cos \theta = -\frac{1}{2} \text{ each have 2}$$
solutions in $(-\pi, \pi)$ so 4 solutions

40.
$$r = a\cos b\theta$$
 has b petals if b is odd and 2b petals if b is even.

47.
$$x^2-3x = -4x+6$$
 and $x^2-3x = 4x-6$
Solutions are -3, 2, 1 and 6, but only -3 and 1 work in the original equation. $-3+1=-2$

49. Because
$$g(x) = ax^6 + bx^4 + cx^2$$
,
 $g(4) = g(-4)$.
 $f(4) = 87 = g(4) + 4$, so $g(4) = 83$
 $f(-4) = g(4) - 4 = 83 - 4 = 79$

58.
$$\ln y = x^2 \ln x$$

 $\frac{1}{y} \frac{dy}{dx} = x^2 \cdot \frac{1}{x} + \ln x \cdot 2x$
 $\frac{dy}{dx} = (x + 2x \ln x) \cdot x^{x^2} = x^{x^2 + 1} (1 + 2\ln x)$
60. $bbb_{b+1} = (b+1)^3 - 1$ in base 10.

60.
$$bbb_{b+1} = (b+1)^3 - 1$$
 in base 10. $(b+1)^3 - 1 = b^3 + 3b^2 + 3b + 1 - 1$ $= b(b^2 + 3b + 3)$