

TMSCA HIGH SCHOOL MATHEMATICS TEST#10 © FEBRUARY 7, 2015

GENERAL DIRECTIONS

1. About this test:

- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- 2. All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA TMSCA

			2014-201	5 T	MSCA Mat	hematics T	est Ten		
1.	What is $41.\overline{6}\%$ o	f the	quotient of $\frac{2}{3}$ and	nd $\frac{5}{2}$?					
A)	$\frac{1}{18}$	B)	$\frac{1}{90}$	C)	$\frac{1}{180}$	D)	$\frac{2}{9}$	E)	$\frac{1}{9}$
2.	Mr. Green's stati proposition. Of t	stics o he stu	class passed out idents who agree How many stud	a surve ed with	y to 108 set proposition reed with b	niors. Forty ns, 32 agree	y-five student d with propo ions?	s agree wi sition one	th neither and 39 agreed
A)	8	B)	7	C)	13	D)	6	E)	11
3. A)	Java Joe sells two customer wants to 1 pound	o type o buy B)	s of coffee. Typ 2 pounds of a b 1.2 pounds	pe A co lend fo C)	sts \$11.00 f r \$24.00. H 0.75 poun	per pound a low much o ds D)	nd Type B co f Type A sho 0.8 pounds	osts \$13.50 ould Joe pu E)	per pound. A tt in the blend? 1.25 pounds
4.	Which of the follo	owing	is an equation of	of the li	ne that is pa	arallel to $2x$	x - 13y = 27 a	nd include	s (-9,11)?
A)	2x - 13y = -143	B)	13x + 2y = -95	C)	2x - 13y =	–161 D)	13x + 2y = -	-139 E)	2x - 13y = -125
5.	A circle is inscribed smaller square fol- is continued infini- areas of all of the A) $16\pi in^2$	ed in lowed itely a circle B)	a square, then a d by a circle insc and one side of t $\cos^2 2\pi in^2$	square cribed i he large	is inscribed n the smalle est square is π in ²	in the circler square and 4 inches, v	e, then a circ d so on. If th what is the su	le is inscri his pattern m of the	bed in the
	A) 10 <i>n</i> m	D)	<i>52n</i> m	C) 0.	<i>i</i> t 111	$\frac{D}{1-2}$	$\frac{1}{\sqrt{2}}$ in ²	$\frac{4\pi}{1-\sqrt{2}}$	in ²
6.	A red die and a gr on the red die is p	een d rime,	ie are both rolle what is the prob	d and tl bability	ne top numb that the sur	pers on each n of the dic	are recorded will be prin	l. Given the?	nat the number
A)	$\frac{7}{18}$	B)	$\frac{1}{2}$	C)	$\frac{2}{9}$	D)	$\frac{5}{18}$	E)	0
7.	What is the period	l of th	e graph of the f	unction	$f(x) = \frac{2}{3}c$	$\cos\left(3\left(\theta-\frac{\pi}{2}\right)\right)$	$\left(\frac{1}{2}\right)$?		
A)	4π	B)	2π	C)	$\underline{\pi}$	D)	π	E)	2
0	3		3	0	2			c	3
8. Δ)	The repeating dec	imal B)	0.363636 in ba	c ase 8 ca	n be writtei	n as which (of the followi	ng fraction	$\frac{15 \text{ in base 8}}{23}$
11)	$\frac{12}{25}$	D)	$\frac{10}{21}$	C)	$\frac{13}{32}$	D)	$\frac{12}{21}$	L)	$\frac{23}{52}$
9.	The ratio of widt \$2.87 per yard, h	h to le ow m	ength in a rectan	gular y st to co	ard is 3:7.	If the area on the state of the	of the yard is 1?	7581 yd ² a	and fencing costs
A)	\$545.30	B)	\$999.55	C)	\$1090.60	D)	\$817.95	E)	\$1181.65
10. A)	Barry has 10 boo others are arrange 518400	oks on ed. H B)	his shelf. He li low many distin 17280	kes to l ct arran C)	keep his 6 m agements of 3628800	hath books t books can D)	ogether, but Barry make o 86400	doesn't car on his shelt E)	re how the f? 151200
11.	If $x - y = 16$ and	xy = 2	28, then $x^2 + y^2$	=					
A)	312	B)	200	C)	284	D)	228	E)	528
12.	Larry wants to be coupon for 10% of total cost. How r	iy 4 n off ea nuch	ew tires for his t ch tire. When h will Larry pay i	truck. ' e goes f tax is	The ones he to buy his ti 8.25%?	wants usua res, his bud	lly sell for \$ dy gives him	228 per tir an additic	e, but he has a onal 15% off his
A)	\$740.43	B)	\$747.84	C)	\$898.32	D)	\$755.24	E)	\$972.43

- 13. Let $8x^5 12x^4 + 6x^3 5x^2 + 2 = 0$. According to Descartes' Rule of Signs how many possible positive real roots are there?
- A) 4, 2 or 0 B) 2 or 0C) 0 D) 3 or 1 E) 1
- 14. The graph shows $f(x) = a\cos(x+b) + c$. f(x) =

- 15. A jar contains 48 coins worth \$5.23. It contains pennies, nickels, dimes and quarters. There are two more nickels than pennies and eight less quarters than dimes. How many dimes are in the jar?
- B) 11 C) 19 A) 6 D) 10 E) 8 16. If $a_0 = 4$, $a_1 = 6$ and $a_{n+1} = (a_{n-2})^2 - 6a_{n-1}$, then $a_5 = 6a_{n-1}$ B) 27552 C) 1632 D) 807424 E) 904 A) -536 17. A and B are the roots of $f(x) = 2x^2 - 11x + 15$. Evaluate $A^5 + 5A^4B + 10A^3B^2 + 10A^2B^3 + 5AB^4 + B^5$. C) $-\frac{1}{32}$ D) $-\frac{161051}{32}$ B) 161051 161051 A) 161051 1024 32 18. Given that the even integers continue in the pattern shown, find the sum of the numbers in the 8th row. A) 504 B) 510 C) 990 D) 720 E) 750 10 8 14 18 12 16 19. $\sin^4 \alpha - \cos^4 \alpha =$ 20 24 26 28 ... C) $-\cos 2\alpha$ D) $\sin^2 \alpha$ B) $\tan^2 \alpha$ A) $\sin 2\alpha$ E) $\cos^2 \alpha$ 20. There are two values of k for which det $\begin{pmatrix} k & 1 \\ 3 & k+7 \end{pmatrix} = 95$. What is larger value of k? A) 7 B) C) -14 D) 21 E) 14 21. What is the sum of the quadratic and linear coefficients of the derivative of $f(x) = 9x^4 - 3x^3 + 5x^2 + 6x - 9$? C) -27 D) 1 A) 27 B) 11 E) -37 22. What is the area of the region enclosed by the graphs of $f(x) = -4x^2 + 7x + 15$ and g(x) = 3x + 7? C) $\frac{14}{3}$ D) $\frac{32}{3}$ A) 6 B) 36 E) 18 23. A satellite has eight solar power cells. There is a 40% that any single cell will fail in the first five years of operation. If the satellite needs at least two functional cells to continue operating, what is the probability

that the satellite will be operational at the end of five years? (nearest thousandth)

A) 0.121 B) 0.984 C) 0.992 D) 0.994 E) 0.999

24. Simplify: $a^{3}b^{3} \div a^{-3}b^{2} \times a^{5} \div (a^{7}b^{7}) + a^{4} \div b^{2}$.

A) B) $\frac{a^4}{b^2}$ $\frac{2a^4}{b^2}$

Copyright © 2014 TMSCA

25. The illustration shown is a quadrilateral inscribed in a circle. If AC is a diameter and $\overline{AB} \approx \overline{BC}$, what is the probability that a dart landing randomly in the circle would land outside the shaded region? (nearest hundredth)

A) 0.39 B) 0.64 C) 0.61 D) 0.41 E) 0.36
26.
$$\left(3 + \frac{1}{x^4}\right) \div \left(\frac{1}{x^2} - 2\right) =$$

A) $\frac{3x^4 + 2}{1 - 2x^2}$ B) $\frac{3x^4 + 2}{1 - 2x^4}$ C) $\frac{3x^2 + 1}{1 - 2x^4}$ D) $\frac{3x^4 + 1}{x^2 - 2x^4}$ E) $\frac{3x^2 - 1}{x^2 + 2x^4}$

27. The time Meredith spends in the car on the way to work varies inversely with the speed she drives. If it takes her 20 minutes driving 40 mph, how long will it take her if she drives 25 mph?

B) 32 minutes C) 24 minutes D) 36 minutes 30 minutes E) 28 minutes A) 28. Given $\sin \theta = -\frac{1}{2}$ and $\frac{\pi}{2} \le \theta \le \frac{3\pi}{2}$, calculate $\cos 2\theta$. A) $\frac{\sqrt{3}}{2}$ B) $-\frac{1}{2}$ C) $\frac{1}{2}$ D) 1 $\frac{\sqrt{3}}{2}$ $\sqrt{3}$ 29. The operation ∂ is defined so that $a\partial b = \frac{a+b}{a^2+b^2}$. Evaluate $2\partial(-1\partial 3)$. C) $\frac{11}{20}$ D) $\frac{7}{29}$ B) $\frac{10}{3}$ A) 55 E) 13 5 101

30. Find the value of A + B + C, where A, B and C are positive integers such that $\frac{33}{10} = A + \frac{1}{B + \frac{1}{C+1}}$.

A) 8 B) 7 C) 18 D) 5 E) 10 31. The matrix multiplication $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ results in a 270° counter-clockwise rotation of the point (x, y)around the origin. $\begin{pmatrix} a & b \\ c & d \end{pmatrix} =$ A) $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ B) $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ C) $\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ D) $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ E) $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

32. What is the digit in the tens place in the sum: (1!) + (3!) + (9!) + (27!) + (729!)? A) 8 B) 2 C) 5 D) 4 E)

33. Norman invests \$10,000 in an account with a fixed interest rate of 4.25% that is compounded quarterly. How long will it take for him to have a total of \$14,500 in the account? (nearest quarter of a year)
A) 8.75 B) 8.25 C) 10.50 D) 9.25 E) 8.50

n)	0.75	D)	0.23	C)	10.50	D)	1.25	L)	0.50
34.	$9\frac{1}{3}\% \text{ of } \left(\frac{1}{4} \div 0.58\right)$	333	.)=						
A)	4	B)	1	C)	21	D)	7	E)	3
ĺ.		<i>,</i>	25		<u></u>		250		
			25		500		250		50
35.	$223_4 + 425_6 + 205_8$	₃ =							
A)	853	B)	273	C)	522	D)	337	E)	373
)	000	_)	270	<i>c</i>)	0 = =	_,	001	_,	0.0

 $'_{C}$

7

36. If $\frac{1}{2r+5} + \frac{2}{r-13}$	$=\frac{1}{2r^2}$	$\frac{16x-22}{x-21x-65}$, then	A + I	8 =				
A) 14 $2x + 5 + x - 15$	\mathbf{B}	$\frac{-21}{8}$	C)	10	D)	6	E)	12
37. The total surface a tetrahedron?	irea o	f a regular tetrahe	dron	is $147\sqrt{3}$ cm ² . W	hat is	the perimeter of	one f	ace of the
A) 21 cm	B)	$21\sqrt{3}$ cm	C)	$7\sqrt{3}$ cm	D)	7 cm	E)	$14\sqrt{3}$ cm
38. $\angle A$ and $\angle B$ are su	pple	mentary. If <i>m∠A</i>	=(4.	x)° and $m \angle B = (5x)$	c+18)°, find $m \angle B$.		
A) 18°	B)	108°	C)	36°	D)	90°	E)	72°
39. Given $f(x) = 2x$	-1 ar	and $g(x) = x^3 - 8$, f	ind ,	g(f(x)).				
A) $8x^3 - 4x^2 + 2x - 9$)	C) 8.	$x^{3}-1$	$2x^2 + 6x - 1$		E) $8x^3 - 10$		
B) $8x^3 - 1$		D) 8.	$x^{3}-1$	$2x^2 + 6x - 9$				
40. A large cylindrica the tank to the near	l tank rest i	c holds 6500 gallo nch?	ns of	water. If the heig	ht of	the tank is 1 yard	, wha	t is the radius of
A) 362 in.	B)	136 in.	C)	115 in.	D)	427 in.	E)	284 in.
41. Box A contains 5 4 and 9. One piec numbers obtained A) $\frac{2}{15}$ B)	piece e of p will $\frac{1}{5}$	s of paper number paper is drawn at r have a sum that is C) $\frac{7}{15}$	ed 1 ando divis	, 3, 5, 7 and 9. Bo om from each box. sible by 3? D) $\frac{4}{15}$	x B c Wha E	contains 3 pieces of at is the probability $\frac{2}{5}$	of pap y that	er numbered 1, t the two
42. The volume of the	e righ	t triangular prism	show	wn ismm ³ .				,/>
A) 80640 B) 1	7612	C) 19096	D)) 94976 E)	1185	2 28 mm	\leq	128 mm
A) 80640 B) 1 43. Solve $\log_9 81 + \log_9 81$	7612 $g_9\left(\frac{1}{9}\right)$	C) 19096 $-\log_9 3 = \log_9 x$	D) for x .) 94976 E)	1185	2 28 mm	mm	128 mm
A) 80640 B) 1 43. Solve $\log_9 81 + \log_9 8$ A) 3	7612 $g_{9}\left(\frac{1}{9}\right)$ B)	C) 19096 $\left(-\log_9 3 = \log_9 x\right)$	D) for <i>x</i> . C)) 94976 E) √3	1185 D)	2 28 mm 53	mm E)	128 mm 27
 A) 80640 B) 1 43. Solve log₉ 81+log A) 3 44. What is domain of 	7612 $g_9\left(\frac{1}{9}\right)$ B) f the p	C) 19096 $) - \log_9 3 = \log_9 x^{\frac{1}{2}}$ 1 relation $(x-2)^2 + \frac{1}{2}$	D) for x . C) $(y - $) 94976 E) $\sqrt{3}$ $3)^2 = 25 ?$	1185 D)	2 28 mm	mm E)	128 mm 27
A) 80640 B) 1 43. Solve $\log_9 81 + \log_9 81$ A) 3 44. What is domain of A) [2,3]	7612 $g_9\left(\frac{1}{9}\right)$ B) f the 1 B)	C) 19096 $\left(-2,8\right)^{2}$	D) for x . C) $(y - C)$	$\begin{array}{c} 94976 \text{E} \\ \sqrt{3} \\ 3 \\ \end{array}^2 = 25 ? \\ [-2,8] \end{array}$	1185 D) D)	2 28 mm 53 9 [-3,7]	mm E) E)	128 mm 27 (-3,7)
A) 80640 B) 1 43. Solve $\log_9 81 + \log_9 81$ A) 3 44. What is domain of A) [2,3] 45. Evaluate $\lim_{h \to 0} \frac{\tan\left(\frac{\pi}{4}\right)}{2}$	7612 $g_{9}\left(\frac{1}{9}\right)$ B) f the f B) $\frac{1}{2}(h) = h$	C) 19096 $\int -\log_9 3 = \log_9 x t$ 1 relation $(x-2)^2 + (-2,8)$ $\frac{-\tan\left(\frac{\pi}{4}\right)}{2}.$	D) for <i>x</i> . C) (<i>y</i> – C)	$\begin{array}{c} 94976 \text{E}) \\ \sqrt{3} \\ 3)^2 = 25? \\ [-2,8] \end{array}$	1185 D) D)	2 28 mm 53 9 [-3,7]	E)	128 mm 27 (-3,7)
A) 80640 B) 1 43. Solve $\log_9 81 + \log_9 81$ A) 3 44. What is domain of A) [2,3] 45. Evaluate $\lim_{h \to 0} \frac{\tan\left(\frac{\pi}{4} + \log_9 8\right)}{2}$	7612 $g_{9}\left(\frac{1}{9}\right)$ B) f the f B) $\frac{1}{2} + h = \frac{1}{2}$ B)	C) 19096 $\int -\log_9 3 = \log_9 x t$ 1 relation $(x-2)^2 + (-2,8)$ $\frac{-\tan\left(\frac{\pi}{4}\right)}{\sqrt{2}}.$	D) for <i>x</i> . C) (<i>y</i> – C) C)	2) 94976 E) $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}^{2} = 25 ?$ [-2,8]	1185 D) D) D)	2 28 mm 53 9 [-3,7] 1	E) E)	128 mm 27 (-3,7) $\frac{1}{2}$
A) 80640 B) 1 43. Solve $\log_9 81 + \log_9 81$ A) 3 44. What is domain of A) [2,3] 45. Evaluate $\lim_{h \to 0} \frac{\tan\left(\frac{\pi}{4} + \log_9 8\right)}{1 + \log_9 8}$ A) $\frac{1}{\sqrt{2}}$ 46. If $f(x) = 3^x$, find	$f'(-\frac{1}{9}) = \frac{1}{9} \int_{-\frac{1}{9}}^{\frac{1}{9}} \frac{1}{9} \int_{-$	C) 19096 $\int -\log_9 3 = \log_9 x t$ 1 relation $(x-2)^2 + (-2,8)$ $\frac{-\tan\left(\frac{\pi}{4}\right)}{\sqrt{2}}$.	D) for <i>x</i> . C) (<i>y</i> – C) C)	2) 94976 E) $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}^{2} = 25?$ [-2,8]	1185 D) D) D)	2 ²⁸ mm 53 9 [-3,7] 1	E) E)	128 mm 27 (-3,7) $\frac{1}{2}$
A) 80640 B) 1 43. Solve $\log_9 81 + \log_9 81$ A) 3 44. What is domain of A) [2,3] 45. Evaluate $\lim_{h \to 0} \frac{\tan\left(\frac{\pi}{4} + \log_9 8\right)}{2}$ A) $\frac{\sqrt{2}}{2}$ 46. If $f(x) = 3^x$, find A) $3x$	$f'(a) = \frac{f'(a)}{a}$ $f'(a) = \frac{f'(a)}{a}$	C) 19096 $\int -\log_9 3 = \log_9 x dx$ 1 relation $(x-2)^2 + (-2,8)$ $\frac{-\tan\left(\frac{\pi}{4}\right)}{\sqrt{2}}$. $\sqrt{2}$ x). $3^x \ln 3$	D) for <i>x</i> . C) (<i>y</i> – C) C)	2 y = 94976 E) $\sqrt{3}$ $\sqrt{3}$ $3)^2 = 25 ?$ [-2,8] 2 $x \cdot 3^{x-1}$	1185 D) D) D)	2 28 mm 53 9 [-3,7] 1 3^{x}	E) E) E)	128 mm 27 (-3,7) $\frac{1}{2}$ 3 ^x
A) 80640 B) 1 43. Solve $\log_9 81 + \log_9 81$ A) 3 44. What is domain of A) [2,3] 45. Evaluate $\lim_{h \to 0} \frac{\tan\left(\frac{\pi}{4} + \log_9 8\right)}{2}$ A) $\frac{\sqrt{2}}{2}$ 46. If $f(x) = 3^x$, find A) $3x$	$f(12) = \frac{1}{9} \left(\frac{1}{9} + h\right)$ $f(1) = \frac{1}{9}$	C) 19096 $\int -\log_9 3 = \log_9 x + 1$ 1 relation $(x-2)^2 + (-2,8)$ $\frac{-\tan\left(\frac{\pi}{4}\right)}{\sqrt{2}}$ x $3^x \ln 3$	D) for <i>x</i> . C) (<i>y</i> – C) C)	b) 94976 E) $\sqrt{3}$ $3)^2 = 25 ?$ [-2,8] 2 $x \cdot 3^{x-1}$	1185 D) D) D)	2 28 mm 53 9 [-3,7] 1 3 ^x	E) E) E)	$\frac{128 \text{ mm}}{(-3,7)}$ $\frac{1}{2}$ $\frac{3^{x}}{\ln 3}$
A) 80640 B) 1 43. Solve $\log_9 81 + \log_9 81$ A) 3 44. What is domain of A) [2,3] 45. Evaluate $\lim_{h\to 0} \frac{\tan\left(\frac{\pi}{4} + \log_9 8\right)}{2}$ A) $\frac{\sqrt{2}}{2}$ 46. If $f(x) = 3^x$, find A) $3x$ 47. The odds of drawing	$f(12) = \frac{1}{9} \left(\frac{1}{9} \\ B\right)$ $f(1) = \frac{1}{9}$	C) 19096 $\int -\log_9 3 = \log_9 x f$ 1 relation $(x-2)^2 + (-2,8)$ $\frac{-\tan\left(\frac{\pi}{4}\right)}{\sqrt{2}}$ x). $3^x \ln 3$ pink raffle ticket a	D) for x. C) (y - C) C) C) tran	94976 E) $\sqrt{3}$ $3)^2 = 25 ?$ [-2,8] 2 $x \cdot 3^{x-1}$ adom from a bucket	1185 D) D) D) ct 495	2 28 mm^{53} 9 [-3,7] 1 3^{x} 5 tickets are 4:7. H	E) E) E) E)	$\frac{128 \text{ mm}}{27}$ $(-3,7)$ $\frac{1}{2}$ $\frac{3^{x}}{\ln 3}$ nany pink
A) 80640 B) 1 43. Solve $\log_9 81 + \log_9 81$ A) 3 44. What is domain of A) [2,3] 45. Evaluate $\lim_{h\to 0} \frac{\tan\left(\frac{\pi}{4}\right)}{2}$ A) $\frac{\sqrt{2}}{2}$ 46. If $f(x) = 3^x$, find A) $3x$ 47. The odds of drawing tickets would have	7612 $g_9\left(\frac{1}{9} \\ B\right)$ f the n B) f'(. B) f'(. B) ng a e to b B)	C) 19096 $\int -\log_9 3 = \log_9 x f$ 1 relation $(x-2)^2 + (-2,8)$ $\frac{-\tan\left(\frac{\pi}{4}\right)}{\sqrt{2}}$ x). $3^x \ln 3$ pink raffle ticket a e removed from the form	D) for x. C) (y - C) C) C) ut ran	94976 E) $\sqrt{3}$ $3)^2 = 25 ?$ [-2,8] 2 $x \cdot 3^{x-1}$ adom from a bucket icket to reduce the 105	1185 D) D) D) t 495 odds	2 2^{28} mm 53^{53} 9 [-3,7] 1 3^{x} 5 tickets are 4:7. H to 1:3? 95	E) E) E) E) How 1	$\frac{128 \text{ mm}}{27}$ $(-3,7)$ $\frac{1}{2}$ $\frac{3^{x}}{\ln 3}$ nany pink 75

48.	What is the area o	f the	convex quadrilat	teral w	with the vertices	(4,10),	(9,7), (11,2) and	l (2,2	2).
A)	83	B)	45.5	C)	75	D)	9	E)	20.25

Copyright © 2014 TMSCA

TMSCA 14-15 HSMA Test 10

49. Given a sequence with Fibonacci characteristics 2, a, b, 0, 1, c... find the value of a+b+c.

A) -1 B) 2 C) 0 D) -2 E) 1

50. Mr. Thompson has 12 students on his math team. He would like to form a study group including 5 students, but only one of his top three students. How many distinct study groups could he form?

A)	378	B)	264	C)	126	D)	210	E)	756
51.	$\operatorname{Given} \int_{-8}^{5} f(x) dx =$	=17,	find $\int_{-8}^{5} (2f(x) + 3) dx$	8)dx					
A)	73	B)	138	C)	42	D)	10	E)	121
52.	If $\cos\theta = -\frac{11}{61}$ and	10≤	$\theta \leq \pi$, then $\tan \theta$	=					
A)	<u>60</u>	B)	<u>11</u>	C)	_ <u>60</u>	D)	$-\frac{60}{100}$	E)	<u>60</u>
	11		61		61		11		61
53.	$f(x) = ax^5 + bx^3 + $	-cx+	12 and f(8) = 19	, finc	f(-8).				
A)	7	B)	19	C)	24	D)	26	E)	5
54.	Find the constant	term	in the expansion o	of (3)	$x^2 - \frac{5}{x} \bigg)^6.$				
A)	5625	B)	-20000	C)	84375	D)	-1000	E)	15625
33 .	How many distinc	t arra	ingements are ther	e of t	three letters chose	$\frac{1}{D}$	n the words "MA"		EAM"?
A)	72	B)	144	C)	42	D)	96	E)	56
56.	If $\frac{x-8}{x+21} + \frac{x+21}{x-8}$	is eq	ual to the mixed n	umbo	$er A \frac{B}{(x+21)(x-8)}$	$\overline{)}$, the	en $B =$		
A)	484	B)	169	C)	168	D)	841	E)	505
57.	$f(x) = 1 + x - \frac{x^2}{2}$	$-\frac{x^3}{3!}$	$+\frac{x^4}{4!}+\frac{x^5}{5!}-\frac{x^6}{6!}\dots$	Find	the 10^{-8} place of	f(4)			
A)	6	B)	9	C)	5	D)	2	E)	1
58.	58. A curve has equation $xy^3 + 2xy^2 = 3$. Find the slope of the tangent to this curve at the point (1, 1).								
A)	0	B)	_3	C)	-1	D)	3	E)	$-\frac{3}{1}$
59.	The length of a red inches wide. If the	ctang e per	7 ular picture is thre imeter of the outsi	e tin de of	the width. The frame is 96 in	pictu pictes,	7 are is surrounded b what is the length	by a : h of t	4 frame which is 5 he picture in
A)	7 in.	B)	21 in.	C)	24 in.	D)	8 in.	E)	30 in.
60.	How many positiv	e per	fect cubes are fact	tors o	of $(4!)(5!)(6!)$?				

A) 6 B) 4 C) 8 D) 5 E) 7

1. E	21. D	41. D
2. A	22. E	42. A
3. B	23. C	43. A
4. C	24. B	44. D
5. C	25. D	45. C
6. A	26. D	46. B
7. B	27. B	47. E
8. A	28. C	48. B
9. C	29. A	49. E
10. D	30. A	50. A
11. A	31. E	51. B
12. D	32. A	52. D
13. A	33. A	53. E
14. E	34. B	54. C
15. C	35. D	55. D
16. B	36. C	56. D
17. A	37. B	57. E
18. D	38. B	58. B
19. C	39. D	59. B
20. A	40. C	60. C

2014-2015 TMSCA Mathematics Test Ten Select Solutions

5. The radius of the circle (2) is also half	$35, 2(4^2)+2(4)+3+4(6^2)+2(6)+5+$	
the diagonal. Use this and the special		
triangle to find the radius of the second	$2(8^2) + 5 = 337$	
circle. The areas of the circles form a		
geometric sequence with the first two terms 4π and 2π , so the sum of the infinite	36. Multiply the whole equation by the common denominator to get	
sequence is $\frac{4\pi}{1} = 8\pi$.	A(x-13) + B(2x+5) = 16x-22, so solve	
$1 - \frac{1}{2}$	the system $A + 2B = 16$ and	
2	-13A + 5B = -22 (when $x = 0$) to get	
8 This fraction is	B = 6 and $A = 4$ for a sum of 10.	
36 30 10 12		
$\frac{36}{77} = \frac{36}{63} = \frac{10}{21} = \frac{12}{25}$.	46. The derivative of $f(x) = a^x$ is	
778 0510 2110 258	$f'(x) = a^x \ln a$, so the derivative of	
17. The $A^5 + 5A^4B$ expression is the	$f(x) = 3^x$ will be $f'(x) = 3^x \ln 3$.	
binomial expansion of $(A+B)^5$, so the		
sum of the roots to the 5^{th} power is	53. Let $g(x) = ax^5 + bx^3 + x$, then	
$\left(\frac{11}{1}\right)^5 = \frac{161051}{1000}$	g(8) = 7 and	
(2) 32	f(-8) = -g(8) + 12 = -7 + 12 = 5.	
18 $(\sin^2 \alpha + \cos^2 \alpha)(\sin^2 \alpha - \cos^2 \alpha) =$		
$\frac{100}{100} \left(\frac{100}{100} + \frac{100}{100} +$	54. The constant term in the expansion is $(2 + 3)^4$	
$1(-\cos 2\alpha) = -\cos 2\alpha.$	$_{6}C_{2}(3x^{2})^{2}\left(\frac{-5}{x}\right)^{4} = 84375$ because the	
25. Let the diameter of the circle be 2.	variables all divide to 1.	
Since each of the triangles are inscribed in semiciral $(P \text{ and } (D \text{ are right}))$		
triangles with the side lengths shown. The	55. If there are 2-1's then there are 4 other	
probability that a dart would land inside	arrangements for each set of 3 letters, so	
the quadrilateral	there are 12 arrangements with 2-T's	
√3 ∧	Similarly, there are 12 arrangements with	
$1 + \frac{\sqrt{3}}{2}$ $A = \frac{\sqrt{2}}{5}$	2-A's and 2-M's. Also, there are	
is $\frac{2}{\pi}$, so the $\left(\begin{vmatrix} 1 \\ 2 \end{vmatrix} \right)$	$5 \cdot 4 \cdot 3 = 60$ arrangements with no repeated	
probability of a $\sqrt{1}$	letters. In total there are $3(12) + 60 = 96$	
dart landing $D = \frac{30}{\sqrt{3}} C$	possible arrangements.	
$\sqrt{3}$	r · · · · · · · · · · · · · · · · · · ·	
outside would be $1 - \frac{1+\frac{1}{2}}{2}$	57. This is the MacClaurin series	
π	expansion of $f(x) = \sin x + \cos x$, so	
2 1 1	$f(4) = \sin 4 + \cos 4 \approx -1.410446116$ and	
30. $3\frac{3}{10} = 3 + \frac{1}{10} = 3 + \frac{1}{11}$, so $A = 3$,	the 10^{-8} place is 1	
$10 \frac{10}{2} 3 + \frac{1}{2}$		
B = 3 and $C = 2$. The sum is 8.		
32. There are no changes in the 10's place		
in 11, 21, 01 aguals the 10's disit for the		
111 1+3+9 equals the 10's digit for the		
whole expression of 6.		