

TMSCA HIGH SCHOOL MATHEMATICS TEST #1 © OCTOBER 26,2013

GENERAL DIRECTIONS

1. About this test:

- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- 2. All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA TMSCA

	2013-2014 TMSCA Mathematics Test One								
1. Evaluate: $27 \cdot (0.\overline{6} \div 0.6) + 0.375 \div 0.\overline{2} \cdot 64$.									
(A)	135	(B)	150	(C)	31.3	(D)	138	(E)	28.3
2.	2. Karen borrowed \$1115 for 8 months at a simple interest rate of 3.5%. What will her monthly payments be to the nearest cent?								
(A)	\$171.90	(B)	\$142.63	(C)	\$144.25	(D)	\$142.66	(E)	\$139.38
3.	3. There are 334 seniors at City High School taking math and/or science classes. If 197 students are taking								
(A)	197	(B)	259	(C)	106	(D)	334	(E)	122
4.	Which of the follo	wing	is not an equatio	n of th	e line parallel to	2x + 7	7y = 13 through th	e poir	nt $(-2,3)$?
(A)	2x - 7y = 17	(B)	4x + 14y = 34	(C) -	-2x - 7y = -17	(D)	2x + 7y = 17 (E) -	-6x - 21y = -51
5.	5. Simplify: $\frac{4x^2 - 25}{x^2 + 10x + 21} \cdot \frac{x^2 + 11x + 24}{2x^2 + 19x + 35}$.								
(A)	$\frac{2x^2 + 11x - 40}{x^2 + 49}$	(B)	$\frac{2x^2 - 11x + 40}{x^2 - 49}$	(C)	$\frac{2x^2 + 11x + 40}{x^2 - 14x + 49}$	(D)	$\frac{2x^2 - 11x + 40}{x^2 + 49}$	(E)	$\frac{2x^2 + 11x - 40}{x^2 + 14x + 49}$
6.	A boat travelling	with th	ne current can ma	ke a ti	rip in 7 hours. Th	he retu	ırn trip takes 15 h	ours.	If the current
(A)	flows at a rate of 2 7.5 mh ⁻¹	2 mh ⁺ (B)	, what is the spee 5.5 mh^{-1}	d of th (C)	2 mh^{-1}	(D)	3.5 mh ⁻¹	(E)	4 mh ⁻¹
7. (A)	Which of the follo Irrational	wing (B)	sets of numbers i Natural	s close (C)	ed under subtract Whole	ion? (D)	Imaginary	(E)	Rational
8.	A regular pentago	n with	n vertices A, B, C	, D an	d E respectively	is insc	ribed in a circle.	Find	the measure of
(A)	108°	(B)	72°	(C)	144°	(D)	90°	(E)	54°
9. Which of the following types of functions is the best model for the value of an investment with a fixed									
(A)	Logarithmic	(B)	Quadratic	(C)	Trigonometric	(D)	Exponential	(E)	Logistic
10. The ratio of the width to the length of a rectangle is 5:7. The perimeter is 124.8 cm. What is the area of the rectangle?									
(A)	35 cm^2	(B)	3785.6 cm^2	(C)	946.4 cm^2	(D)	876.6 cm^2	(E)	182 cm^2
11. Given $a_{n+2} = a_n(a_{n+1})$, $a_1 = 3$ and $a_2 = -4$ find a_6 .									
(A)	-27648	(B)	576	(C)	-576	(D)	15925248	(E)	27648
12. A 13-ft plank is used for a ramp up to the edge of a porch that stands 2.75 ft off the ground. Find the angle of elevation to the nearest second									
(A)	77° 44' 15"	(B)	12° 12' 45"	(C)	12° 47'	(D)	1° 21' 27"	(E)	11° 56' 39"
13. (A)	Find the total surface 209.83 cm^2	ace are (B)	ea of a right cone 323.71 cm ²	with (C)	base diameter 6.2 104.64 cm ²	26 cm (D)	and height 10.20 135.69 cm^2	cm. (E)	418.58 cm ²
14. What is the sum of the coefficients of the expansion of $(x-3)^4$?									
(A)	-2	(B)	-108	(C)	16	(D)	-12	(E)	81

TMSCA 13-14 HSMA Test 1

15. Which of the functions below generates the graph shown?

24. How many distinct arrangements can be made from the letters of the word LICORICE? (E) 720 (B) 10080 (D) 180 (A) 40320 (C) 1260

Copyright © 2013 TMSCA

(A) 7 (B) 5 (C) 15 (D) 12 (E) 8

TMSCA 13-14 HSMA Test 1

37. Four brothers each paint at the same rate. If three of the brothers can paint a fence in 5 hours, how long								
would it take all $(A) = 7$ hrs 30 mins	four broken	others to paint a f	tence t	that is twice as lo	(D)	d twice as tall?	(F)	12 hrs 20 mins
(A) 7 ms 50 mms	(D)	15 1115	(C)	10 111 5	(D)	20 111 5	(L)	12 1118 20 1111118
38. A particular mod investigation, a c	el of ca	ar has an advertis er discovers that	ed gas the ga	s mileage of 35 m s mileage is norm	npg for nally c	r in-town driving. listributed with a	Upo stand	n further ard deviation of
2.5 mpg. What is	s the pr	obability that the	drive	r will get over 37	7 mpg	for in-town driving	ng?	
(A) 29%	(B)	79%	(C)	21%	(D)	33%	(E)	31%
39. Ned left his from	t porch	and travelled 54	8 yard	ls on a bearing of	f 52° tl	hen turned and tra	avelle	d 372 yards on a
bearing of 184°.	How f	ar will Ned have	to trav	vel to go directly	back t	to his porch? (nea	rest f	oot)
(A) 2760 ft.	(B)	1222 ft.	(C)	920 ft.	(D)	1380 ft.	(E)	407 ft.
40 Find the sum of t	he infi	nite geometric se	ries 2	$7+15+08\overline{3}$				
(A) 3.375	(B)	2.144	(C)	3.950	(D)	13.500	(E)	6.075
	(2)		(0)	$\Sigma = 1 D^4 + D^3$			(_)	0.070
41. Let P and Q be the formula Q be the form	ne roots	s of $6x^2 - 25x + 1$	4 = 0.	Find $P' + 4P'Q$	2+6P	$^{2}Q^{2}+4PQ^{3}+Q^{4}$.	· · · · ·	
(A) 390625	(B)	83521	(C)	390625	(D)	50625	(E)	194737
1296		1296		81		16		1296
42. Simplify $a^2 \times b^3$	$\langle a^{-2} \div l$	$b^{-3} \div a^3 \times b^{-5}$.						
(A) 1	(B)	$a^{3}b$	(C)	a^3	(D)	a^3b^5	(E)	b
$\overline{a^3b}$				$\frac{a}{h^5}$				$\overline{a^3}$
				0	`	2		
43. Which of the following is an equation of the tangent line to $f(x) = 7x^3 + 2x - 5$ when $x = -3$?								
		1		8 5 (,			
(A) $y - 200 = 191(2)$	x - 3)	(C)	y+19	1 = 200(x-3)	,	(E) y-191=	=-20	0(x-3)
(A) $y - 200 = 191(x)$	(x-3)	(C)	y+19	1 = 200(x-3)	,	(E) y-191=	= -20	0(x-3)
(A) $y - 200 = 191(x)$ (B) $y - 191 = -200$	(x-3)	(C) (D)	y + 19 $y + 20$	00 = 191(x+3)	,	(E) y-191=	=-20	0(x-3)
(A) $y-200 = 191(x)$ (B) $y-191 = -200$ 44. Texas HS ends ev	(x-3) (x+3) very sc	(C) (D) hool day at 3:22	y + 19 y + 20 pm. V	1 = 200(x-3) 00 = 191(x+3) What is the smalle	, est ang	(E) $y-191 =$	= -20	0(x-3)
(A) $y-200 = 191(x)$ (B) $y-191 = -200$ 44. Texas HS ends evolution of a clock at 3:22	(x-3) (x+3) very sc 2 pm? (2	(C) (D) hool day at 3:22 nearest degree)	y + 19 y + 20 pm. V	1 = 200(x-3) 00 = 191(x+3) What is the smalle	, est ang	(E) $y-191=$	= -20	0(x-3) and minute hands
(A) $y-200 = 191(x)$ (B) $y-191 = -200$ 44. Texas HS ends evolution of a clock at 3:22 (A) 42°	(x-3) (x+3) very sc 2 pm? ((B)	(C) (D) hool day at 3:22 nearest degree) 31°	y + 19 y + 20 pm. V (C)	1 = 200(x-3) 00 = 191(x+3) What is the smalle 46°	, est ang (D)	(E) $y-191 =$ gle between the he 30°	= -20 our an (E)	0(x-3) ad minute hands 37°
(A) $y-200 = 191(x)$ (B) $y-191 = -200$ 44. Texas HS ends evo of a clock at 3:22 (A) 42° 45. Simplify $(5 + 2i)$	(x-3) (x+3) very sc pm? ((B)	(C) (D) hool day at 3:22 nearest degree) 31°	y+19 y+20 pm. V (C)	1 = 200(x-3) 00 = 191(x+3) What is the smalle 46°) est ang (D)	(E) $y-191=$ gle between the he 30°	= -20 our ar (E)	0(x-3) ad minute hands 37°
(A) $y-200 = 191(3)$ (B) $y-191 = -200$ 44. Texas HS ends evolution of a clock at 3:22 (A) 42° 45. Simplify $(5+3i)$	(x-3) (x+3) very sc pm? (2 (B) (4)	(C) (D) hool day at 3:22 nearest degree) 31°	y+19 y+20 pm. V (C)	1 = 200(x-3) 00 = 191(x+3) What is the smalle 46°) est ang (D)	(E) $y-191 =$ gle between the he 30°	= -20 our ar (E)	0(x-3) ad minute hands 37°
 (A) y-200=191(3 (B) y-191=-200 44. Texas HS ends evo f a clock at 3:22 (A) 42° 45. Simplify (5+3i) (A) -724+960i 	(x-3) (x+3) very sc pm? (((B)) ⁴ . (B)	(C) (D) hool day at 3:22 nearest degree) 31° -644-960 <i>i</i>	y+19 y+20 pm. V (C) (C)	0 = 191(x - 3) 00 = 191(x + 3) What is the smalle 46° -724 - 960i) est ang (D) (D)	(E) $y-191 =$ gle between the he 30° 724-960i	= -20 our ar (E) (E)	0(x-3) nd minute hands 37° -644+960 <i>i</i>
(A) $y-200 = 191(3)$ (B) $y-191 = -200$ 44. Texas HS ends evolution of a clock at 3:22 (A) 42° 45. Simplify $(5+3i)$ (A) $-724+960i$ 46. Let $ v_1 = 7$ and $ $	(x - 3) (x + 3) very sci pm? (a (B) (a^4) . (B) $v_2 \ = 2^4$	(C) (D) hool day at 3:22 nearest degree) 31° -644-960i 4, when the direct	y + 19 y + 20 pm. V (C) (C) ection a	1 = 200(x-3) 00 = 191(x+3) What is the smalle 46° -724 - 960i ngles of v_1 and v_2	(D) (D) (D)	 (E) y-191 = gle between the he 30° 724-960<i>i</i> 36° and 77° respective 	= -20 our ar (E) (E) ectivel	0(x-3) nd minute hands 37° -644+960 <i>i</i> ly. Find the
(A) $y-200 = 191(3)$ (B) $y-191 = -200$ 44. Texas HS ends evolution of a clock at 3:22 (A) 42° 45. Simplify $(5+3i)$ (A) $-724+960i$ 46. Let $ v_1 = 7$ and $ $ direction angle of	$\begin{aligned} x - 3 \\ (x + 3) \\ very sc \\ pm? (x \\ B) \\ (B) \\ (B) \\ v_2 \ = 2^4 \\ f \ v_2 \ = 2^4 \end{aligned}$	(C) (D) hool day at 3:22 nearest degree) 31° -644-960i 4, when the direct	y + 19 y + 20 pm. V (C) (C) ction a	1 = 200(x-3) 00 = 191(x+3) What is the smalle 46° -724 - 960i ngles of v_1 and v_2	(D) (D) (D) (2) are 2	(E) $y-191 =$ gle between the he 30° 724-960i 36° and 77° respe	= -20 our ar (E) (E) ectivel	0(x-3) ad minute hands 37° -644+960 <i>i</i> dy. Find the
(A) $y-200 = 191(3)$ (B) $y-191 = -200$ 44. Texas HS ends evolution of a clock at 3:22 (A) 42° 45. Simplify $(5+3i)$ (A) $-724+960i$ 46. Let $ v_1 = 7$ and $ $ direction angle of (A) 222	(x - 3) (x + 3) very sci (B) (x + 3) (B) (x + 3) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)	(C) (D) hool day at 3:22 nearest degree) 31° -644-960i 4, when the direct $v_2 \parallel$. (nearest deg	y + 19 y + 20 pm. V (C) (C) ction a ree)	1 = 200(x-3) 00 = 191(x+3) What is the smalle 46° -724-960i ngles of v_1 and v_2 410	(D) (D) y_2 are $\frac{1}{2}$	(E) $y-191 =$ gle between the he 30° 724-960i 36° and 77° respe	= -20 our ar (E) (E) ectivel	0(x-3) ad minute hands 37° -644+960 <i>i</i> dy. Find the
(A) $y-200 = 191(3)$ (B) $y-191 = -200$ 44. Texas HS ends evolution of a clock at 3:22 (A) 42° 45. Simplify $(5+3i)$ (A) $-724+960i$ 46. Let $ v_1 = 7$ and $ $ direction angle of (A) 22°	(x - 3) (x + 3) very sc pm? (c (B) (x + 3) (B) (x + 3) (B) (x + 3) (B) (x + 3) (B)	(C) (D) hool day at 3:22 nearest degree) 31° -644-960i 4, when the direct $v_2 \parallel$. (nearest deg 113°	y +19 y + 20 pm. V (C) (C) (C) etion a ree) (C)	1 = 200(x-3) 00 = 191(x+3) What is the smalle 46° -724-960i ngles of v_1 and v_2 41°	(D) (D) v_2 are $\frac{1}{2}$	 (E) y-191 = gle between the he 30° 724-960<i>i</i> 36° and 77° respective 68° 	= -20 our ar (E) (E) ectivel (E)	0(x-3) and minute hands 37° -644+960 <i>i</i> dy. Find the 66°
(A) $y-200 = 191(3)$ (B) $y-191 = -200$ 44. Texas HS ends evolution of a clock at 3:22 (A) 42° 45. Simplify $(5+3i)$ (A) $-724+960i$ 46. Let $ v_1 = 7$ and $ $ direction angle of (A) 22° 47. Use the Fibonacc	x - 3 = (x + 3) $ x + 3 = (x + 3)$	(C) (D) hool day at 3:22 nearest degree) 31° -644-960i 4, when the direct $v_2 \parallel$. (nearest deg 113° sequence $a, b, 2, c$	y +19 y + 20 pm. V (C) (C) ction a ree) (C) c,11 to	1 = 200(x-3) 00 = 191(x+3) What is the smalle 46° -724-960i ngles of v_1 and v_1 41° of find the value o	(D) (D) y_2 are $\frac{1}{2}$ (D) f $a + b$	(E) $y-191 =$ gle between the he 30° 724-960i 36° and 77° respective 68° v+c.	= -20 our ar (E) (E) ectivel (E)	0(x-3) ad minute hands 37° -644+960 <i>i</i> ly. Find the 66°
(A) $y-200 = 191(3)$ (B) $y-191 = -200$ 44. Texas HS ends evolution of a clock at 3:22 (A) 42° 45. Simplify $(5+3i)$ (A) $-724+960i$ 46. Let $ v_1 = 7$ and $ $ direction angle of (A) 22° 47. Use the Fibonacce (A) 2	x - 3 = (x + 3) $ x + 3 = (x + 3)$ $ y + 3 = (B)$ $ y + 3 = (B)$ $ x + 3 = (B)$	(C) (D) hool day at 3:22 nearest degree) 31° -644-960i 4, when the direct $\gamma_2 \parallel$. (nearest deg 113° sequence $a, b, 2, c$ 11	y +19 y + 20 pm. V (C) (C) (C) ction a ree) (C) c,11 tc (C)	1 = 200(x-3) 00 = 191(x+3) What is the smalle 46° -724-960i ngles of v_1 and v_1 41° o find the value of 7	(D) (D) y_2 are $\frac{1}{2}$ (D) f $a+b$ (D)	(E) $y-191 =$ gle between the he 30° 724-960i 36° and 77° respective 68° 2+c. 10	= -20 our ar (E) (E) ectivel (E) (E)	0(x-3) ad minute hands 37° -644+960 <i>i</i> ly. Find the 66° 9
(A) $y-200 = 191(3)$ (B) $y-191 = -200$ 44. Texas HS ends evolution of a clock at 3:22 (A) 42° 45. Simplify $(5+3i)$ (A) $-724+960i$ 46. Let $ v_1 = 7$ and $ $ direction angle of (A) 22° 47. Use the Fibonacco (A) 2 48. Find $f(2) + f(4)$	(x + 3) (x + 3) (x + 3) (x + 3) (x + 3) (B) (B) (B) (x + 3) (B) (B) (x + 3) (B) ((B) (B) ((C) (D) hool day at 3:22 nearest degree) 31° -644-960i 4, when the direct $v_2 \parallel$. (nearest deg 113° sequence $a, b, 2, c$ 11 -2) if	y+19 y+20 pm. V (C) (C) (C) ction a ree) (C) c,11 to (C)	1 = 200(x-3) 00 = 191(x+3) What is the smalled 46° -724-960i ngles of v_1 and v_1 41° of find the value of 7	est ang (D) (D) y_2 are $\frac{1}{2}$ (D) f $a+b$ (D)	(E) $y-191 =$ gle between the he 30° 724-960i 36° and 77° respective 68° p+c. 10	= -20 our ar (E) (E) (E) (E) (E)	0(x-3) ad minute hands 37° -644+960 <i>i</i> dy. Find the 66° 9
(A) $y-200 = 191(3)$ (B) $y-191 = -200$ 44. Texas HS ends evolution of a clock at 3:22 (A) 42° 45. Simplify $(5+3i)$ (A) $-724+960i$ 46. Let $ v_1 = 7$ and $ $ direction angle of (A) 22° 47. Use the Fibonacce (A) 2 48. Find $f(2) + f(4)$	x - 3 x + 3 x	(C) (D) hool day at 3:22 nearest degree) 31° -644-960i 4, when the direct $\gamma_2 \parallel$. (nearest deg 113° sequence $a,b,2,c$ 11 -2) if	y + 19 y + 20 pm. V (C) (C) (C) (C) (c) (c) (c) (c) (c) (c) (c) (c	1 = 200(x-3) 00 = 191(x+3) What is the smalle 46° -724 - 960i ngles of v_1 and v_1 41° o find the value of 7 3, x < 0	est ang (D) (D) y_2 are 2 (D) f $a+b$ (D)	(E) $y-191 =$ gle between the he 30° 724-960i 36° and 77° respective 68° 2+c. 10	= -20 our ar (E) (E) (E) (E) (E)	0(x-3) ad minute hands 37° -644+960 <i>i</i> dy. Find the 66° 9
(A) $y-200 = 191(3)$ (B) $y-191 = -200$ 44. Texas HS ends evolution of a clock at 3:22 (A) 42° 45. Simplify $(5+3i)$ (A) $-724+960i$ 46. Let $ v_1 = 7$ and $ $ direction angle of (A) 22° 47. Use the Fibonacco (A) 2 48. Find $f(2) + f(4)$	(x + 3) (x + 3) (x + 3) (x + 3) (x + 3) (x + 3) (x + 3) (B) (B) (B) (x + 3) (B)	(C) (D) hool day at 3:22 nearest degree) 31° -644-960i 4, when the direct $y_2 \parallel$. (nearest deg 113° sequence $a,b,2,c$ 11 -2) if f(x)	$y + 19$ $y + 20$ $pm. V$ (C) $= \begin{cases} x + 3 \\ x^{2}, \end{cases}$	x = 200(x-3) $ x = 200(x-3)$ $ x = 3$	est ang (D) (D) v_2 are 2 (D) f $a+b$ (D)	(E) $y-191 =$ gle between the he 30° 724-960i 36° and 77° respective 68° p+c. 10	= -20 our ar (E) (E) (E) (E) (E)	0(x-3) ad minute hands 37° -644+960 <i>i</i> ly. Find the 66° 9
(A) $y-200 = 191(3)$ (B) $y-191 = -200$ 44. Texas HS ends evolution of a clock at 3:22 (A) 42° 45. Simplify $(5+3i)$ (A) $-724+960i$ 46. Let $ v_1 = 7$ and $ $ direction angle of (A) 22° 47. Use the Fibonacce (A) 2 48. Find $f(2) + f(4)$	(x + 3) (x + 3) (x + 3) (x + 3) (x + 3) (B) (B) (x + 3) (B) (B) (x + 3)	(C) (D) hool day at 3:22 nearest degree) 31° -644-960i 4, when the direct $\gamma_2 \parallel$. (nearest deg 113° sequence $a,b,2,c$ 11 -2) if f(x)	y + 19 $y + 20$ pm. V (C)	= 200(x-3) = 200(x-3)	est ang (D) (D) v_2 are 2^2 (D) f $a+b$ (D)	(E) $y-191 = 0$ gle between the he 30° 724-960i 36° and 77° respective 68° 2+c. 10	= -20 our ar (E) (E) (E) (E) (E)	0(x-3) ad minute hands 37° -644+960 <i>i</i> ly. Find the 66° 9
(A) $y-200 = 191(3)$ (B) $y-191 = -200$ 44. Texas HS ends evo of a clock at 3:22 (A) 42° 45. Simplify $(5+3i)$ (A) $-724+960i$ 46. Let $ v_1 = 7$ and $ $ direction angle of (A) 22° 47. Use the Fibonacc (A) 2 48. Find $f(2) + f(4)$	(x - 3) (x + 3) (x + 3) (x + 3) (x + 3) (x + 3) (x + 3) (B) (B) (B) (B) (C)	(C) (D) hool day at 3:22 nearest degree) 31° -644-960i 4, when the direct $y_2 \parallel$. (nearest deg 113° sequence $a,b,2,c$ 11 -2) if f(x)	y + 19 $y + 20$ pm. V (C)	1 = 200(x-3) 00 = 191(x+3) What is the smalled 46° -724-960i ngles of v_1 and v_1 41° of find the value of 7 3, x < 0 $0 \le x \le 3$ x > 3	est ang (D) (D) v_2 are 2 (D) f $a+b$ (D)	(E) $y-191 =$ gle between the he 30° 724-960i 36° and 77° respective 68° 2+c. 10	= -20 our ar (E) (E) (E) (E) (E)	0(x-3) ad minute hands 37° -644+960 <i>i</i> ly. Find the 66° 9

Copyright © 2013 TMSCA

TMSCA 13-14 HSMA Test 1

49. Given
$$f(x) = x + 7$$
 and $g(x) = (x-2)^3$, find $g(f(2)) \cdot f(g(1))$.
(A) 1512 (B) 2744 (C) 1728 (D) 1807

50. 7 (A)	The concentric cir odds that a particle 3:1 (B)	cles sl e hittin 2:1	hown have radii o ng the circles at ra (C) 3:2	of 2 cr andor	n, 4 cm and 6 cm n would hit the sh (D) 1:3	. What aded a	at are the regions? (E) 1:2		$\overline{)}$
51. I	Let $f(x) = \frac{1}{\sqrt{9-x}}$	= . A	t which of the fol	lowin	g intervals is $f \cos f$	ntinuc	ous?		
(A)	(-3,3)	(B)	(-9,9)	(C)	[0,3]	(D)	[-3,0)	(E)	[-9,9]
52. l (A)	If $\sin \theta > 0$ and $\tan QI$	$\theta < 0$ (B)) then in where w QII	vill θ t (C)	erminate? QIII	(D)	QIV	(E)	y - axis
53. 7 (A)	The medians of tri 3.6 cm	angle (B)	JKL intersect at N 2.4 cm	M. If (C)	the median throu 1.8 cm	gh K l (D)	has a length of 7.2 4.8 cm	2 cm, (E)	find MK. 6 cm
54. 0	Gillian's average s	speeds What	for each morning	g com	mute during a wo	ork we	eek are 42 mph, 4	7 mpł	n, 32 mph, 50
(A)	43.20 mph	(B)	42.71 mph	(C)	43.57 mph	(D)	42.75 mph	(E)	42.17 mph
55. l (A)	If $\ln 2 = x$, $\ln 3 = \frac{yz}{x}$	y and (B)	$\ln 5 = z \text{ then } \ln 7$ $yz - x$	7.5 = (C)	$\frac{xy}{z}$	(D)	y+z-x	(E)	$\frac{y+z}{x}$
56. l	Let $f(x) = ax^7 - b$	$bx^3 - c$	x + 7. If $f(3) =$	15 the	en $f(-3) =$				
(A)	-15	(B)	-1	(C)	9	(D)	-20	(E)	-3
57. The infinite series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4}$ converges to									
(A)	ln 2	(B)	e^2	(C)	е	(D)	0	(E)	$\frac{2}{3}$
58. Ms. Angle must send 3 girls and 4 boys to the counselor for a survey. If her class has 8 girls and 9 boys,									
(A)	182	(B)	3360	? (C)	1016064	(D)	19448	(E)	7056
59. If $y = x^{2x}$ find $\frac{dy}{dx}$.									
(A)	$2x^{2x}\left(1+\ln x\right)$	(B)	$2x^{2x}$	(C)	$4x^{2x}$	(D)	$2x^{2x-1}$	(E)	$x^{2x} \left(2 + \ln x \right)$
60. I	How many solutio	ns are	there for $2x + 5y$	v = 134	42 where x and y	are bo	th positive intege	rs?	

Copyright © 2013 TMSCA

(E) 2058

2013-2014 TMSCA Mathematics Test One Answers

1. D	21. C	41. A
2. B	22. E	42. E
3. E	23. E	43. D
4. A	24. B	44. B
5. E	25. B	45. E
6. B	26. A	46. D
7. E	27. A	47. B
8. B	28. D	48. B
9. D	29. A	49. E
10. C	30. C	50. B
11. A	31. D	51. A
12. B	32. D	52. B
13. D	33. D	53. D
14. C	34. B	54. E
15. B	35. D	55. D
16. D	36. E	56. B
17. A	37. B	57. A
18. B	38. C	58. E
19. A	39. B	59. A
20. E	40. E	60. D

36.
$$49 = 64 + x^2 - 2(8)x\cos 60$$

 $0 = x^2 - 8x + 15$
sum of the roots $= -\frac{b}{a} = \frac{8}{1} = 8$
37. Let *r* be the rate of one brother.
 $3 \cdot 5 \cdot r = 1$ fence $\therefore r = \frac{1}{15} \frac{fence}{hour}$
 $4 \cdot \frac{1}{15}t = 4$ (the fence now has 4 times the area
 $t = 15$ hrs
39. Let $v_1 = \langle 548\cos 52, 548\sin 52 \rangle = \langle x_1, y_1 \rangle$
and $v_2 = \langle 372\cos 184, 372\sin 184 \rangle = \langle x_2, y_2 \rangle$
 $\|v_1 + v_2\| = \sqrt{(x_1 + x_2)^2 + (y_1 + y_2)^2} \approx 1222$ ft
41. $(P + Q)^4 = \left(-\frac{b}{a}\right)^4 = \frac{390625}{1296}$
54. Let 1 trip = 1 mile
week's time (T) $= \frac{1}{42} + \frac{1}{47} + \frac{1}{32} + \frac{1}{50} + \frac{1}{45}$
Average rate for 5 trips $= \frac{5}{T} \approx 42.17 \text{ mh}^{-1}$
57. $\ln x = (x - 1) - \frac{(x - 1)}{2} + \frac{(x - 1)}{3} - \frac{(x - 1)}{4} \dots$
when $0 < x \le 2$
 $\ln 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} \dots$
59. $\ln y = \ln x^{2x} = 2x \ln x$
 $\frac{1}{y} \frac{dy}{dx} = 2x \cdot \frac{1}{x} + \ln x \cdot 2$
 $\frac{dy}{dx} = 2(1 + \ln x) y = 2x^{2x}(1 + \ln x)$