

TMSCA HIGH SCHOOL MATHEMATICS TEST#1 © OCTOBER 24, 2015

GENERAL DIRECTIONS

1. About this test:

- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA TMSCA

2015-2016 TMSCA Mathematics Test One					
1. Evaluate: $24 \times 15 -$					
A. 362.4	B. 374	C. 355.6	D. 402	E. 354	
 Caroline had a rope pieces were 2:3:12 A. 2 ft. 5 in. 	that was 15 feet long, with 10 inches of strin B. 1 ft. 6 in.	· · · · · · · · · · · · · · · · · · ·			
	ulate the value of $a +$	- <i>C</i> .			
A. 39	B. 48	C. 40	D. 31	E. 35	
4. What is the mean of A. 14	f the first four abundat B. 7	nt numbers? C. 18.5	D. 21	E. 21.5	
5. Evaluate: $\frac{(x+2)!}{(x-3)!}$					
A. $x^6 - 5x^4 + 4x^2$	B. $x^4 + 5$	C. $x^4 - 5x^2 + 4$	D. $x^6 + 4x^2$	E. $x^4 - 5x^2 + 5$	
6. Which of the follow represented in this g	graph?	-	-		
	C. $7x - 5y =$ D. $7x + 5y =$		x + 3y = 13		
7. If $\theta = 5\lambda$ and $\alpha + \theta$ A. Substitution	$= \varphi$, then $\alpha + 5\lambda = \varphi$ B. Transitive	-	e of the p e D. Associative	property. E. Reflexive	
 Two consecutive an the measure of one A. 60° 	gles in a pentagon are of the three congruent B. 120°		e other three angles as D. 90°	re congruent. What is E. 135°	
9. The angles at each t					
		54° D. 72°		Q Q	
10. What is the area of $g(x) = -4x + 10$?	the region entirely bou	unded by the two fur	actions $f(x) = x^2 - 4x$	$\alpha + 1$ and $\nu = \sqrt{2}$	
- ()	B. 36	C. 18	D. 108	E. 24	
11. If $x + y = -3$, and y A117	$xy = -10$, then $x^3 + y^3$ B57		D. 63	E. 3	
12. The four brothers L Morris, Nigel and P	ester, Morris, Nigel a	nd Porter wanted to get one-fourth, one-fift	go on a road trip, but l th and one-third of his	Lester had no money. money respectively. If	

13. Find the value of the A. 4880	e arithmetic mean for B. 6100	r terms <i>a</i> , <i>b</i> and <i>c</i> in the C. 7495.68	geometric sequence: D. 6000	3072,3840, <i>a</i> , <i>b</i> , <i>c</i> E. 4800	
14. $\tan\left(\frac{\pi}{6}\right)\cos\left(\frac{\pi}{6}\right) \div c$	$\operatorname{ot}\left(\frac{5\pi}{3}\right)\operatorname{csc}\left(\frac{\pi}{6}\right)\div\operatorname{co}$	$s\left(\frac{5\pi}{3}\right)csc\left(\frac{5\pi}{3}\right) =$			
A. $\frac{4}{3}$	B. 4	C. 2	D. $\frac{2\sqrt{3}}{3}$	E. $\frac{1}{2}$	
15. The intersection of t A. Centroid	the medians of a triar B. Incenter	ngle is called the C. Median	D. Circumcenter	E. Orthocenter	
16. How many integral	values of <i>n</i> exist sucl	h that $n > 3$, and $\frac{n!}{(n-3)}$	$\overline{)!} \le 150?$		
A. 0	B. 3	C. 1	D. 4	E. 2	
17. There are two values of k for which det $\begin{bmatrix} k-1 & 4 \\ -3 & 2k \end{bmatrix} = 0$. The sum of those two values is					
A. 1	B. 5		D2	E1	
18. The radius of each c	circle is 2.5 cm. Find	the perimeter of the tra	apezoid. (nearest tent	h)	
A. 68.1 cm B.	64.6 cm C. 88	.1 cm D. 56.5 cm	E. 58.9 cm		
19. The number 478 in A. 8	base 9 is equivalent t B. 19	to the number k in base C. 9	3. Find the sum of th D. 7	the digits in k . E. 10	
	B. 19	C. 9		-	
A. 8	B. 19	C. 9		-	
A. 8 20. Find the mean value	B. 19 e of $f(x) = 4x^3 - 6x^2$ B. 19	C. 9 $x^{2} + 2x - 1$ for $[-1,3]$. C. 9	D. 7	E. 10 E. 7	
 A. 8 20. Find the mean value A. 8 21. In the rectangle show 	B. 19 e of $f(x) = 4x^3 - 6x^2$ B. 19 wn right, what is x in	C. 9 $x^{2} + 2x - 1$ for $[-1,3]$. C. 9	D. 7 D. 18	E. 10 E. 7 x°	
 A. 8 20. Find the mean value A. 8 21. In the rectangle show 	B. 19 e of $f(x) = 4x^3 - 6x^2$ B. 19 wn right, what is x in . $90-a+b$ C.	C. 9 $x^{2} + 2x - 1$ for $[-1,3]$. C. 9 terms of <i>a</i> and <i>b</i> ? a+b D. 180	D. 7 D. 18 - <i>a</i> - <i>b</i> E. 90+ <i>a</i> -	E. 10 E. 7 b°	
A. 8 20. Find the mean value A. 8 21. In the rectangle show A. $90-a-b$ B. 22. How many distinct a	B. 19 e of $f(x) = 4x^3 - 6x^2$ B. 19 wn right, what is x in . $90-a+b$ C. arrangements can be B. 19958400	C. 9 $x^{2} + 2x - 1$ for $[-1,3]$. C. 9 x^{2} terms of <i>a</i> and <i>b</i> ? a + b D. 180 formed using all of the C. 967680	D. 7 D. 18 -a-b E. $90+a-bletters in the words "$	E. 10 E. 7 $b^{a^{\circ}}$ FALL FESTIVAL"?	
A. 8 20. Find the mean value A. 8 21. In the rectangle show A. $90-a-b$ B. 22. How many distinct a A. 39916800 23. If $g(x) = x - 1$ and A. $x^4 + 3x^3 + 3x^2 $	B. 19 e of $f(x) = 4x^3 - 6x^2$ B. 19 wn right, what is x in . $90-a+b$ C. arrangements can be B. 19958400 $f(x) = x^4$, find $g(f(x)) = x^4$	C. 9 $x^{2} + 2x - 1$ for $[-1,3]$. C. 9 a terms of a and b? a + b D. 180 formed using all of the C. 967680 f(x+1). x^{4}	D. 7 D. 18 -a-b E. 90+ $a-bletters in the words "D. 20442240$	E. 10 E. 7 $b^{a^{\circ}}$ FALL FESTIVAL"?	
A. 8 20. Find the mean value A. 8 21. In the rectangle show A. $90-a-b$ B. 22. How many distinct a A. 39916800 23. If $g(x) = x - 1$ and A. $x^4 + 3x^3 + 3x^2 +$ B. $x^4 + 4x^3 + 6x^2 +$ 24. A chemistry student	B. 19 e of $f(x) = 4x^3 - 6x^2$ B. 19 wn right, what is x in . 90-a+b C. arrangements can be B. 19958400 $f(x) = x^4$, find $g(f(x) = x^4)$, find $g(f(x) = x^4)$. enceds to mix a 50 ff(x) = 0.	C. 9 a + 2x - 1 for $[-1,3]$. C. 9 a + b D. 180 formed using all of the C. 967680 f(x+1). x^4 $x^4 - 2$	D. 7 D. 18 -a-b E. $90+a-1letters in the words "D. 20442240E. x^4 + 4.aining 54% glucose.$	E. 10 E. 7 $b^{a^{\circ}}$ FALL FESTIVAL"? E. 11880 $x^{3} + 6x^{2} + 4x - 2$	
A. 8 20. Find the mean value A. 8 21. In the rectangle show A. $90-a-b$ B. 22. How many distinct a A. 39916800 23. If $g(x) = x - 1$ and A. $x^4 + 3x^3 + 3x^2 +$ B. $x^4 + 4x^3 + 6x^2 +$ 24. A chemistry student	B. 19 e of $f(x) = 4x^3 - 6x^2$ B. 19 wn right, what is x in . 90-a+b C. arrangements can be B. 19958400 $f(x) = x^4$, find $g(f(x) = x^4)$, find $g(f(x) = x^4)$. enceds to mix a 50 ff(x) = 0.	C. 9 a + 2x - 1 for $[-1,3]$. C. 9 a terms of <i>a</i> and <i>b</i> ? a + b D. 180 formed using all of the C. 967680 f(x+1). x^4 $x^4 - 2$ uid ounce solution cont	D. 7 D. 18 -a-b E. $90+a-1letters in the words "D. 20442240E. x^4 + 4.aining 54% glucose.$	E. 10 E. 7 $b^{a^{\circ}}$ FALL FESTIVAL"? E. 11880 $x^{3} + 6x^{2} + 4x - 2$	
A. 8 20. Find the mean value A. 8 21. In the rectangle show A. $90-a-b$ B. 22. How many distinct a A. 39916800 23. If $g(x) = x - 1$ and A. $x^4 + 3x^3 + 3x^2 + $ B. $x^4 + 4x^3 + 6x^2 + $ 24. A chemistry student 30% and 90% solution	B. 19 e of $f(x) = 4x^3 - 6x^2$ B. 19 wn right, what is x in . $90-a+b$ C. arrangements can be B. 19958400 $f(x) = x^4$, find $g(f(x)) = x^4$, find $g(f(f(x))) = x^4$, find $g(f(f(x))) = x^4$, find $g(f(f(x))) = $	C. 9 a + 2x - 1 for $[-1,3]$. C. 9 a + b D. 180 formed using all of the C. 967680 a(x+1). a^{4} $x^{4} - 2$ uid ounce solution continuch of the 30% solution C. 20 ounces	D. 7 D. 18 -a-b E. $90+a-1letters in the words "D. 20442240E. x^4 + 4.aining 54% glucose.on should she use?D. 23 ounces$	E. 10 E. 7 $b^{a^{o}}$ FALL FESTIVAL''? E. 11880 $x^{3} + 6x^{2} + 4x - 2$ The pharmacist has	

27. Which of the following is an equation of the tangent line of $f(x) = 2x^2 - x + \frac{4}{x}$ for x = 2?

A. 6x - y = 4 B. 6x + y = -4 C. 6x - y = -6 D. x + 6y = -4 E. x + 6y = 8

28. If $\log 9 = P$, and $\log 5 = Q$, then $\log 0.6 =$ A. $P - Q^2$ B. $\frac{P}{2Q}$ C. $\frac{P - 2Q}{2}$ D. $\frac{P}{Q^2}$ E. $\frac{P - Q}{2}$ 29. If $U = \{a, b, c, d, e, f, g, h\}$, $A = \{a, c, e, g\}$, and $B = \{b, c, d, e\}$, find $A' \cap B'$. A. $\{a, f, g, h\}$ B. $\{a, b, c, d, e, g\}$ C. $\{b, c, d, e, f\}$ D. $\{a, b, d, f, g, h\}$ E. $\{f, h\}$

30. If *P*, *Q* and *R* are real numbers such that P+Q+R=8, $R^2 = P^2 + Q^2$ and PQ = 8, find the value of *R*. A. 4 B. 8 C. 3 D. 6 E. 1

31. There are 6 girls and 8 boys in Ms. Angel's homeroom class. She must select a group of 2 girls and 2 boys to represent her class in a Veterans Day ceremony. How many distinct groups could does she have to choose from?
A. 1680
B. 43
C. 420
D. 225
E. 1001

32. Which of the following equations in rectangular form can be written as $r-6\sin\theta = 0$ in polar form? A. $x^2 + y^2 = 9$ C. $x^2 + y^2 = 3$ E. $x^2 + y^2 - 6y = 0$

B. $x^2 - 6x + y^2 = 0$ D. $x^2 + y^2 = 2\sqrt{3}$

33. Find the area of $\triangle DEF$. (nearest tenth)

A. 9.7 in^2 B. 20.8 in^2 C. 6.8 in^2 D. 7.8 in^2 E. 11.7 in^2

34. Find the remainder when $f(x) = 6x^3 - x^2 - 7x + 5$ is divided by x - 3.CA. 137B. 143C. -133D. -145E.

35. A sales clerk is packaging blue, red and black pens for a back-to-school sale. How many different packages of 6 pens can he make?
A. 84
B. 126
C. 28
D. 56
E. 35

36. Two roots of $f(x) = x^3 + bx^2 + cx + d$ are 4 and 3 + i. Find b + c + d.

A. 54 B. -26 C. -16 D. 64 E. -4

37. If $g(x) \le f(x) \le h(x)$ for all x, k in [a,b], where $x \ne k$, and $\lim_{x \to k} g(x) = L$ and $\lim_{x \to k} h(x) = L$ then $\lim_{x \to k} f(x) = L$. This theorem is known as:

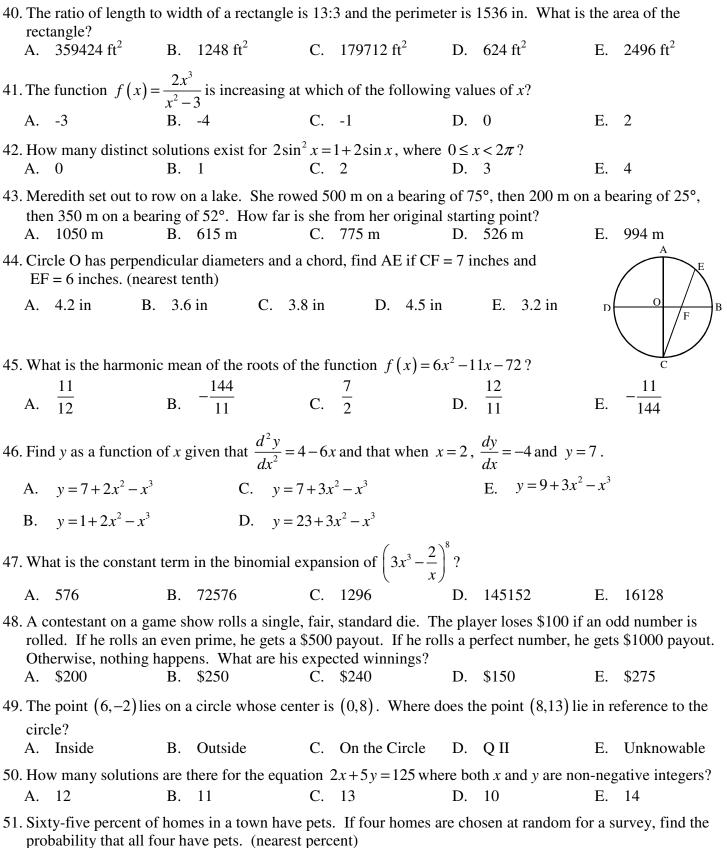
A. Sandwich Theorem C. Rolle's Theorem E. Fundamental Theorem of Calculus

B. Intermediate Value Theorem D. Fundamental Theorem of Algebra

38. Calculate the total surface area of the triangular prism shown.

- A. 728 cm^2 B. 644 cm^2 C. 840 cm^2 D. 924 cm^2 E. 560 cm^2
- 39. Find the sum of all the three digit numbers whose digits have a sum of eight and whose digits can all be used to form a perfect cube.
 A. 1925
 B. 1776
 C. 861
 D. 915
 E. 1420

155


24 cm

25 cm

10 cm

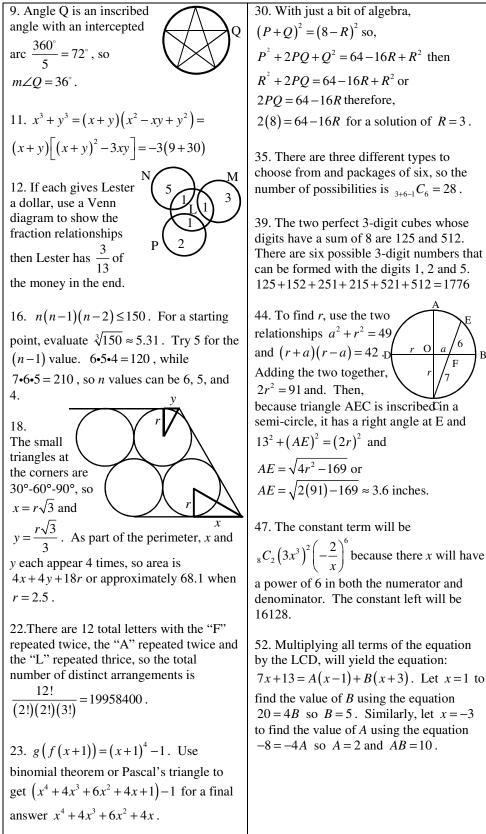
7 cm

Copyright © 2015 TMSCA

A. 26% B. 11% C. 13% D. 15% E. 18%

TMSCA 15-16 HSMA Test 1

52. If $\frac{7x+13}{x^2+2x-3} = \frac{A}{x+1}$ A. 7	$\frac{1}{3} + \frac{B}{x-1}$, then A B6	<i>B</i> =	C.	-3			D.	6	E	10
53. Given that the set of		s conti			triand					
numbers in row 9.	naturai number	s conti	inue i	in the	unung	Sulai	patter		Jw, ma u	
				2	1 3	Δ			(row 1) (row 2)	
			5	2 6	7	8	9		(row 2)	
		10	11	12	13 	14	15	16	(row 4) ()	
A. 83	B. 73		C.	77			D.	67	E.	85
54. The square root of 1	013 in base 6 is:									
A. 111 ₆	B. 23 ₆		C.	35 ₆			D.	25 ₆	E.	151 ₆
55. If $y^2 = 5 - 12i$ and y	$v^3 = -9 - 46i$ whe	ere y =	= <i>a</i> +	<i>bi</i> the	n <i>a</i> +	- <i>b</i> =				
A. 1	B38		C.	5			D.	-62	E.	6
56. $3^3 + 4^3 + 5^3 + \dots + 12^3$	$^{3} + 13^{3} + 14^{3} =$									
A. 11016	B. 11017		C.	2895	570		D.	11025	E.	2744
57. What is the area of a										
A. $\frac{3s^2\sqrt{3}}{4}$	B. $4s^2\sqrt{3}$		C.	$2s^2$	$\sqrt{3}$		D.	$3s^2\sqrt{3}$	E.	$3s^2\sqrt{3}$
7	5							2		
58. Find the units digit $\frac{1}{2}$			C	7			р	0	Б	0
A. 3	B. 1		C.	/			D.	0	E.	9
59. Simplify to the near	est ten-thousand	th plac	ce: 1	+(1.3	$) + \frac{(1)}{(1)}$	$\frac{(3)^2}{2}$	$\frac{(1.3)}{21}$	$\frac{3}{-}+\frac{(1.3)^4}{41}+.$		
A. 0.2624	B. 0.2675					<i>–</i> •	5.	4! 3.6302	E.	0.9636
60. The function f is su		dx = 9			the va	alue c			c ?	
A. 12	B. 36		C.	27			D.	32	E.	18


2015-2016 TMSCA Mathematics Test One Answers

1. E	21. E	41. B
2. E	22. B	42. C
3. A	23. B	43. E
4. C	24. A	44. B
5. C	25. A	45. B
6. D	26. D	46. A
7. A	27. A	47. E
8. B	28. C	48. A
9. E	29. E	49. A
10. B	30. C	50. C
11. A	31. C	51. E
12. E	32. E	52. E
13. B	33. E	53. B
14. B	34. A	54. B
15. A	35. C	55. A
16. B	36. C	56. A
17. A	37. A	57. D
18. A	38. A	58. A
19. C	39. B	59. C
20. E	40. D	60. B

2015-2016 TMSCA Mathematics Test One Selected Solutions

0

R

53. The median of any row in the arrangement shown will always be the center number. The 1, 3, 7, 13...can either be used to develop a quadratic regression $y = x^2 - x + 1$ where x is the row number and *v* is the median. For the 9^{th} row the median will be 73. An alternative would be to use the differences in the center numbers and continue the pattern 1+2=33+4=77+6=1313+8=21......57+16=73. 56. The formula for the sum of the first ncubes is $\left(\frac{n(n+1)}{2}\right)^2$, so the sum of the series will be $\left(\frac{14(15)}{2}\right)^2 - 1 - 8 = 11016$. 59. The series shown is the McClaurin series for the function $f(x) = e^x$ when x = 1.3, so $e^{1.3} \approx 3.6692967$.