

TMSCA HIGH SCHOOL MATHEMATICS TEST#1 © OCTOBER 24, 2015

GENERAL DIRECTIONS

1. About this test:

- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA TMSCA

		2015-20	16 TMSCA Mathe	ematics Test One	
1.	Evaluate: $24 \times 15 -$	$4! - 27 \div (18 - 6) \times 4$	+27.		
	A. 362.4	B. 374	C. 355.6	D. 402	E. 354
2.	Caroline had a rope pieces were 2:3:12 v A. 2 ft. 5 in.	that was 15 feet loo with 10 inches of st B. 1 ft. 6 in.	ng. She cut off thr ring left over. Ho C. 2 ft. 6 in	ree pieces such that the w long was the shortes . D. 1 ft. 10 in	ratio of lengths of the t piece? n. E. 1 ft. 8 in.
3.	Given that the data	set 12, <i>a</i> , <i>b</i> , <i>c</i> , 24, 29	is shown least to g	reatest and has a mean	of 20, mode of 24 and
	median of 20. Calc	ulate the value of a	c+c.		
	A. 39	B. 48	C. 40	D. 31	E. 35
4.	What is the mean of A. 14	f the first four abund B. 7	dant numbers? C. 18.5	D. 21	E. 21.5
5.	Evaluate: $\frac{(x+2)!}{(x-3)!}$:	$-\frac{x!}{(x-1)!}$			
	A. $x^6 - 5x^4 + 4x^2$	B. $x^4 + 5$	C. $x^4 - 5x^2$	+4 D. $x^6 + 4x^2$	E. $x^4 - 5x^2 + 5$
6.	Which of the follow	ving is the standard	form of the equation	on of the line	
	represented in this g	graph?	1		
		0 7 5	10 E	7 . 5 12	
	A. $5x + 7y = 3$	C. 7x - 5y	v = -10 E.	7x + 5y = 13	
	B. $/x - 5y = -1/$	$\mathbf{D}. /x + 5 \mathbf{y}$	y = -3		
7.	If $\theta = 5\lambda$ and $\alpha + \theta$	$= \varphi$, then $\alpha + 5\lambda =$	φ . This is an exa	mple of the	_ property.
	A. Substitution	B. Transitive	C. Commut	ative D. Associat	ive E. Reflexive
8.	Two consecutive an the measure of one of	gles in a pentagon a of the three congrue	are supplementary ent angles?	. The other three angle	es are congruent. What is
	A. 60°	B. 120°	C. 150°	D. 90°	E. 135°
9.	The angles at each p	point on the star sho	own are congruent.	What is the measure	of the angle Q?
	A. 30° B.	- 27° C.	54° D.	72° E. 36°	, XX
10	What is the area of t	the region entirely h	ounded by the two	o functions $f(x) = x^2$	-4r+1 and
10	$a(x) = -4x \pm 10^{\circ}$	the region entirely t	bounded by the two	f(x) = x	$\pm \lambda + 1$ and
	$g(x) = -\pi x + 10$	B 36	C 18	D 108	F 24
1.1		D . 50	3	D. 100	L. 27
11	. If $x + y = -3$, and x	$xy = -10$, then $x^3 + 57$	$y^{3} =$	D (2	Е 2
	A11/	В3/	C. 33	D. 65	E. 3
12	. The four brothers L Morris, Nigel and P	ester, Morris, Nigel Porter each gave Les	and Porter wanted ster one-fourth, on	d to go on a road trip, b e-fifth and one-third of	but Lester had no money. This money respectively. If
	each gave Lester the	e same amount, what P_{P}	at fraction of the n	noney did Lester posse	ss after the exchange?
	A. $\frac{3}{12}$	$\frac{\mathbf{D}}{\frac{\mathbf{J}}{7}}$	$\frac{1}{2}$	$D. \frac{3}{10}$	\mathbf{L} . $\frac{1}{4}$
	13	/	3	10	4

13	Find the value 4880	of the arithm	netic mean for	terms a	a, b and c in the g	geome	etric sequence: 3	6072, F	3840, <i>a</i> , <i>b</i> , <i>c</i>
14	$\tan\left(\frac{\pi}{6}\right)\cos\left(\frac{\pi}{6}\right)$	$\left(\frac{\pi}{5}\right) \div \cot\left(\frac{5\pi}{3}\right)$	$\left \csc\left(\frac{\pi}{6}\right) \div \cos \left(\frac{\pi}{6}\right) \right $	$s\left(\frac{5\pi}{3}\right)c$	$\csc\left(\frac{5\pi}{3}\right) =$	D.	0000	L.	+000
	A. $\frac{4}{3}$	B.	4	C.	2	D.	$\frac{2\sqrt{3}}{3}$	E.	$\frac{1}{2}$
15	The intersection A. Centroid	on of the med B.	lians of a trian Incenter	gle is ca C.	alled the Median	D.	 Circumcenter	E.	Orthocenter
16	. How many int	egral values	of <i>n</i> exist such	that n	> 3, and $\frac{n!}{(n-3)!}$	≤150	0?		
	A. 0	В.	3	C.	1	D.	4	E.	2
17	. There are two	values of <i>k</i> f	for which det $\begin{bmatrix} k \\ k \end{bmatrix}$	-3 2	$\begin{bmatrix} 4 \\ k \end{bmatrix} = 0$. The sum	n of th	nose two values is	5	
	A. 1	В.	5	C.	3	D.	-2	E.	-1
18	. The radius of e	each circle is	2.5 cm. Find	the per	imeter of the trap	ezoic	d. (nearest tenth)		
	A. 68.1 cm	B. 64.6 d	cm C. 88.	1 cm	D. 56.5 cm	E.	58.9 cm	X	
10	The number 1'	79 in haga 0	ia aquivalant t	tha nu	mbar kin basa 2	Ein	d the sum of the	<u> </u>	$\frac{1}{k}$
19	. The number 4' A. 8	78 in base 9 B.	is equivalent to 19	the nu C.	mber <i>k</i> in base 3 9	. Fin D.	d the sum of the of	digits E.	in <i>k</i> . 10
19 20	. The number 4' A. 8 . Find the mean	78 in base 9 B . Value of $f($	is equivalent to 19 $x) = 4x^3 - 6x^2$	the nu C. +2x-1	wher k in base 3 9 1 for $[-1,3]$.	. Find D.	d the sum of the o	ligits E.	s in <i>k</i> . 10
19 20	. The number 4' A. 8 . Find the mean A. 8	78 in base 9 : B. value of <i>f</i> (B.	is equivalent to 19 $x) = 4x^3 - 6x^2$ 19	the nu C. +2x-1 C.	umber <i>k</i> in base 3 9 1 for [–1,3]. 9	. Find D. D.	d the sum of the o 7 18	ligits E. E.	5 in <i>k</i> . 10
19 20 21	. The number 4' A. 8 . Find the mean A. 8 . In the rectangl	78 in base 9 B. value of <i>f</i> (B. e shown righ	is equivalent to 19 $x) = 4x^3 - 6x^2$ 19 nt, what is x in	the nu C. +2x-1 C. terms o	The second state k in base 3 9 1 for $[-1,3]$. 9 of <i>a</i> and <i>b</i> ?	. Find D. D.	d the sum of the o 7 18	ligits E. E.	$\frac{1}{2}$ in k. 10
19 20 21	The number 4' A. 8 Find the mean A. 8 In the rectangl A. $90-a-b$	78 in base 9 B. value of <i>f</i> (B. e shown righ B. 90-	is equivalent to 19 $x) = 4x^3 - 6x^2$ 19 nt, what is x in -a+b C.	the nu C. +2x-1 C. terms o a+b	(mber <i>k</i> in base 3 9) (for $[-1,3]$. 9) (f <i>a</i> and <i>b</i> ? D. 180-	. Fin D. D. <i>a−b</i>	d the sum of the of 7 18 E. $90+a-b$	ligits E. E.	$\frac{\sin k}{10}$ 7 $\frac{a^{\circ}}{b^{\circ}}$
19 20 21 22	The number 4' A. 8 Find the mean A. 8 In the rectangl A. $90-a-b$ How many dis A. 39916800	78 in base 9 B. value of f (B. e shown righ B. 90- tinct arrange B.	is equivalent to 19 $x) = 4x^3 - 6x^2$ 19 nt, what is x in -a+b C. ements can be to 19958400	the nu C. +2x-1 C. terms of $a+b$ formed C.	(mber <i>k</i> in base 3 9 1 for $[-1,3]$. 9 of <i>a</i> and <i>b</i> ? D. 180– using all of the loge 967680	Find D. D. a-b etters D.	d the sum of the of 7 18 E. $90+a-b$ in the words "FA 20442240	E. E. E.	5 in <i>k</i> . 10 7 <i>a</i> ° <i>b</i> ° <i>x</i> ° <i>x</i> ° <i>x</i> ° <i>x</i> ° <i>x</i> ° <i>x</i> ° <i>x</i> ° <i>x</i> °
 19 20 21 22 23 	The number 4' A. 8 Find the mean A. 8 In the rectangl A. $90-a-b$ How many dis A. 39916800 If $g(x) = x-1$	78 in base 9 B. value of $f(B.$ e shown righ B. 90- tinct arrange B. and $f(x) =$	is equivalent to 19 $x) = 4x^3 - 6x^2$ 19 nt, what is x in -a+b C. ements can be to 19958400 x^4 , find $g(f)$	the nu C. +2x-1 C. terms of a+b formed C. (x+1))	Sumber k in base 3 9 1 for $[-1,3]$. 9 of a and b? D. $180-$ using all of the loge 967680	. Find D. D. a-b etters D.	d the sum of the of 7 18 E. $90+a-b$ in the words "FA 20442240	ligits E. E. [[[] E.	s in <i>k</i> . 10 7 <u>a°</u> <u>b°</u> FESTIVAL"? 11880
 19 20 21 22 23 	The number 4' A. 8 Find the mean A. 8 In the rectangl A. $90-a-b$ How many dis A. 39916800 If $g(x) = x-1$ A. $x^4 + 3x^3 + 2x^3$	78 in base 9 B. value of $f($ B. e shown right B. 90- tinct arrange B. and $f(x) = 3x^2 + x$	is equivalent to 19 $x) = 4x^3 - 6x^2$ 19 nt, what is x in -a+b C. ements can be to 19958400 x^4 , find $g(f)$ C.	the nu C. +2x-1 C. terms of a+b formed C. (x+1)) x^4	Sumber k in base 3 9 1 for $[-1,3]$. 9 of a and b? D. $180-$ using all of the la 967680	Find D. D. a-b etters D.	d the sum of the a 7 18 E. $90+a-b$ in the words "FA 20442240 E. $x^4 + 4x^3 - b$	ligits E. E. $\begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\frac{7}{10}$ 7 $\frac{a^{\circ}}{b^{\circ}}$ $FESTIVAL''?$ 11880 $+4x-2$
 19 20 21 22 23 24 	. The number 4' A. 8 . Find the mean A. 8 . In the rectangl A. $90-a-b$. How many dis A. 39916800 . If $g(x) = x-1$ A. $x^4 + 3x^3 +$ B. $x^4 + 4x^3 +$. A chemistry st 30% and $90%$	78 in base 9 B. value of $f($ B. e shown right B. 90- tinct arrange B. and $f(x) =$ $3x^2 + x$ $6x^2 + 4x$ udent needs solutions on	is equivalent to 19 $x) = 4x^3 - 6x^2$ 19 nt, what is x in -a+b C. ements can be to 19958400 x^4 , find $g(f$ C. D. to mix a 50 flu hand. How m	the nu C. +2x-1 C. terms of a+b formed C. (x+1)) x^4 x^4-2 iid ounce	Sumber k in base 3 9 1 for $[-1,3]$. 9 of a and b? D. $180-$ using all of the la 967680 ce solution contait the 30% solution	Find D. D. a-b etters D.	d the sum of the a 7 18 E. $90+a-b$ in the words "FA 20442240 E. $x^4 + 4x^3 - 54\%$ glucose. Th ld she use?	ligits E. E. LL I E. $+ 6x^2$ ne ph	$\frac{7}{10}$ 7 $\frac{a^{\circ}}{b^{\circ}}$ $FESTIVAL"?$ 11880 $+ 4x - 2$ armacist has
 19 20 21 22 23 24 	The number 4' A. 8 Find the mean A. 8 In the rectangl A. 90- <i>a</i> - <i>b</i> How many dis A. 39916800 If $g(x) = x-1$ A. $x^4 + 3x^3 +$ B. $x^4 + 4x^3 +$ A chemistry st 30% and 90% A. 30 ounces	78 in base 9 B. value of $f($ B. e shown right B. 90- tinct arrange B. and $f(x) =$ $3x^2 + x$ $6x^2 + 4x$ udent needs solutions on B.	is equivalent to 19 $x) = 4x^3 - 6x^2$ 19 nt, what is x in -a+b C. ements can be to 19958400 x^4 , find $g(f$ C. D. to mix a 50 flu hand. How monopole 27 ounces	terms of a+b formed (x+1)) x^4 $x^4 - 2$ iid ounce uch of the C.	umber k in base 3 9 1 for $[-1,3]$. 9 of a and b? D. 180– using all of the la 967680 ce solution contain the 30% solution 20 ounces	Find D. D. a-b etters D. aning shou D.	d the sum of the of 7 18 E. $90+a-b$ in the words "FA 20442240 E. $x^4 + 4x^3 - 54\%$ glucose. The Id she use? 23 ounces	ligits E. E. LL I E. $+ 6x^2$ ne ph E.	$\frac{7}{10}$ 7 $\frac{a^{\circ}}{b^{\circ}}$ $FESTIVAL"?$ 11880 $+ 4x - 2$ armacist has 25 ounces
 19 20 21 22 23 24 25 	The number 4' A. 8 Find the mean A. 8 In the rectangl A. $90-a-b$ How many dis A. 39916800 If $g(x) = x-1$ A. $x^4 + 3x^3 +$ B. $x^4 + 4x^3 +$ A chemistry st 30% and $90%A. 30 ouncesWhich of the fA. QIII$	78 in base 9 B. value of $f($ B. e shown right B. 90- tinct arrange B. and $f(x) =$ $3x^2 + x$ $6x^2 + 4x$ udent needs solutions on B. Collowing quages B.	is equivalent to 19 $x) = 4x^3 - 6x^2$ 19 nt, what is x in -a+b C. ements can be to 19958400 x^4 , find $g(f$ C. D. to mix a 50 flu hand. How magnetic 27 ounces adrants does not QI & QII	the nu C. +2x-1 C. terms of a+b formed C. (x+1)) x^4 x^4-2 nid ounce ouch of the C. ot contal C.	timber k in base 3 9 1 for $[-1,3]$. 9 of a and b? D. 180– using all of the la 967680 the 30% solution 20 ounces in a solution to 5 QIV	Find D. D. a-b etters D. aning shou D. 5x+3 D.	d the sum of the of 7 18 E. $90+a-b$ in the words "FA 20442240 E. $x^4 + 4x^3 - 54\%$ glucose. The 1d she use? 23 ounces $y \ge 9$? QI & QIV	digits E. E. E. LL I E. $+ 6x^2$ ne ph E. E.	$\frac{7}{10}$ $\frac{7}{a^{\circ}}$ $\frac{x^{\circ}}{b^{\circ}}$ FESTIVAL''? 11880 $+ 4x - 2$ armacist has 25 ounces QI

27. Which of the following is an equation of the tangent line of $f(x) = 2x^2 - x + \frac{4}{x}$ for x = 2?

A. 6x - y = 4 B. 6x + y = -4 C. 6x - y = -6 D. x + 6y = -4 E. x + 6y = 8

28. If $\log 9 = P$, and $\log 5 = Q$, then $\log 0.6 =$ A. $P - Q^2$ B. $\frac{P}{2Q}$ C. $\frac{P - 2Q}{2}$ D. $\frac{P}{Q^2}$ E. $\frac{P - Q}{2}$ 29. If $U = \{a, b, c, d, e, f, g, h\}$, $A = \{a, c, e, g\}$, and $B = \{b, c, d, e\}$, find $A' \cap B'$. A. $\{a, f, g, h\}$ B. $\{a, b, c, d, e, g\}$ C. $\{b, c, d, e, f\}$ D. $\{a, b, d, f, g, h\}$ E. $\{f, h\}$

30. If *P*, *Q* and *R* are real numbers such that P+Q+R=8, $R^2 = P^2 + Q^2$ and PQ = 8, find the value of *R*. A. 4 B. 8 C. 3 D. 6 E. 1

31. There are 6 girls and 8 boys in Ms. Angel's homeroom class. She must select a group of 2 girls and 2 boys to represent her class in a Veterans Day ceremony. How many distinct groups could does she have to choose from?
A. 1680
B. 43
C. 420
D. 225
E. 1001

32. Which of the following equations in rectangular form can be written as $r-6\sin\theta = 0$ in polar form? A. $x^2 + y^2 = 9$ C. $x^2 + y^2 = 3$ E. $x^2 + y^2 - 6y = 0$

B. $x^2 - 6x + y^2 = 0$ D. $x^2 + y^2 = 2\sqrt{3}$

33. Find the area of $\triangle DEF$. (nearest tenth)

A. 9.7 in^2 B. 20.8 in^2 C. 6.8 in^2 D. 7.8 in^2 E. 11.7 in^2

34. Find the remainder when $f(x) = 6x^3 - x^2 - 7x + 5$ is divided by x - 3.CA. 137B. 143C. -133D. -145E.

35. A sales clerk is packaging blue, red and black pens for a back-to-school sale. How many different packages of 6 pens can he make?
A. 84
B. 126
C. 28
D. 56
E. 35

36. Two roots of $f(x) = x^3 + bx^2 + cx + d$ are 4 and 3 + i. Find b + c + d.

A. 54 B. -26 C. -16 D. 64 E. -4

37. If $g(x) \le f(x) \le h(x)$ for all x, k in [a,b], where $x \ne k$, and $\lim_{x \to k} g(x) = L$ and $\lim_{x \to k} h(x) = L$ then $\lim_{x \to k} f(x) = L$. This theorem is known as:

A. Sandwich Theorem C. Rolle's Theorem E. Fundamental Theorem of Calculus

B. Intermediate Value Theorem D. Fundamental Theorem of Algebra

38. Calculate the total surface area of the triangular prism shown.

- A. 728 cm^2 B. 644 cm^2 C. 840 cm^2 D. 924 cm^2 E. 560 cm^2
- 39. Find the sum of all the three digit numbers whose digits have a sum of eight and whose digits can all be used to form a perfect cube.
 A 1025
 B 1776
 C 861
 D 015
 E 1420

A. 1925 B. 1776 C. 861 D. 915 E. 1420

155

24 cm

25 cm

10 cm

7 cm

40.	The	ratio of length	to wid	th of a rec	tangle	is 13:	3 and th	ne perimet	er is	1536 in. What	is the a	area of the
	A.	359424 ft ²	B.	1248 ft^2		C.	17971	2 ft^2	D.	624 ft^2	E.	2496 ft ²
41.	The	function $f(x)$	$=\frac{2x}{x^2}$	$\frac{3}{-3}$ is increa	asing at	whic	ch of the	e followin	g val	ues of x ?		
	A.	-3	В.	-4		C.	-1		D.	0	E.	2
42.	Hov A.	w many distinct 0	soluti B.	ons exist f 1	or 2sin	$x^2 x = C.$	1+2sin 2	\mathbf{x} , where	$0 \le x$ D.	$x < 2\pi?$	E.	4
43.	Men then A.	redith set out to 1 350 m on a be 1050 m	row o aring o B.	n a lake. S of 52°. Ho 615 m	She row ow far i	ved 50 s she C.	00 m or from he 775 m	n a bearing er original	g of 7 start D.	5°, then 200 m ing point? 526 m	on a be E.	earing of 25°, 994 m
44.	Ciro EF	cle O has perper = 6 inches. (ne	ndicula arest te	ar diamete enth)	rs and a	a choi	rd, find	AE if CF	= 7 iı	nches and		A
	A.	4.2 in E	3. 3.6	ó in	C. 3.	8 in	Ι	D. 4.5 in		E. 3.2 in	D	O F B
45.	Wh	at is the harmon	nic me	an of the r	oots of	the fu	unction	f(x) = 6.	$x^2 - 1$	1x - 72?		C
	A.	$\frac{11}{12}$	B.	$-\frac{144}{11}$		C.	$\frac{7}{2}$		D.	$\frac{12}{11}$	E.	$-\frac{11}{144}$
46.	Fine	d y as a function	n of <i>x</i> g	given that	$\frac{d^2 y}{dx^2} = dx^2$	4–62	and the	at when x	=2,	$\frac{dy}{dx} = -4$ and y	r = 7.	
	A.	$y = 7 + 2x^2 - x$.3	C.	y = 7	7 + 3x	$x^{2} - x^{3}$			E. $y = 9 + 3x$	x^2-x^3	
	B.	$y = 1 + 2x^2 - x^3$	3	D.	y = 2	23+3	$x^2 - x^3$		0			
47.	Wh	at is the constan	nt term	in the bin	omial e	expan	sion of	$\left(3x^3-\frac{2}{x}\right)$	* ?			
	A.	576	В.	72576		C.	1296		D.	145152	E.	16128
48.	A c roll Oth	ontestant on a g ed. If he rolls a erwise, nothing	game sl in ever g happe	how rolls a prime, he ens. What	a single gets a are his	, fair, \$500 expe	standa payout cted wi	rd die. Th . If he rol nnings?	e pla ls a p	yer loses \$100 perfect number,	if an oo he gets	dd number is \$\$1000 payout.
	A.	\$200	B.	\$250		Ċ.	\$240	-	D.	\$150	E.	\$275
49.	The circ	point (6,–2)li le?	es on a	a circle wh	iose cer	nter is	(0,8).	Where de	oes th	ne point (8,13)	lie in re	eference to the
	A.	Inside	В.	Outside		C.	On the	e Circle	D.	Q II	E.	Unknowable
50.	Hov	w many solution	ns are t	there for th	ne equa	tion 2	2x+5y	=125 whe	re bo	th x and y are n	ion-neg	ative integers?
	A.	12	В.	11		C.	13		D.	10	E.	14
51.	Sixt prol	ty-five percent of bability that all	of hom four h	nes in a tov ave pets.	vn have (nearest	e pets t perc	. If fou ent)	r homes a	re ch	osen at random	for a s	urvey, find the
	A.	26%	В.	11%		C.	13%		D.	15%	E.	18%

52. I A	If $\frac{1}{x}$	$\frac{7x+13}{x^2+2x-3} = \frac{A}{x+3}$	$+\frac{l}{x}$ B.	$\frac{3}{-1}$, then AB -6	=	C.	-3			D.	6	E.	10
53. C	Give num	en that the set of bers in row 9.	natui	al numbers c	contir	nue in	n the t	riang	ular p	oatterr	n shown belo	w, find th	e median of the
-					10	5 11	2 6 12	1 3 7 13	4 8 14	9 15	16	(row 1) (row 2) (row 3) (row 4) ()	
A	A .	83	В.	73		C.	77			D.	67	E.	85
54. T A	Гhe A.	square root of 10 111 ₆)13 i B.	n base 6 is: 23 ₆		C.	35 ₆			D.	25 ₆	E.	151 ₆
55. I	f y	$x^2 = 5 - 12i$ and y^3	= -9	9-46i where	e y=	a+b	bi the	n <i>a</i> +	<i>b</i> =				
A	Α.	1	В.	-38		C.	5			D.	-62	E.	6
56. 3 A	3 ³ + A.	$4^3 + 5^3 + \dots + 12^3$ 11016	+13 ³ B.	$+14^{3} = 11017$		C.	2895	70		D.	11025	E.	2744
57. V	Wha	at is the area of a	regu	lar hexagon i	n ter	ms o	f the l	ength	1, <i>s</i> , o	f one	side?		_
A	\ .	$3s^2\sqrt{3}$	В.	$4s^2\sqrt{3}$		C.	$2s^2$	/3		D.	$3s^2\sqrt{3}$	E.	$3s^2\sqrt{3}$
58. F	Finc	4 I the units digit o	f 17 ²	3 ⁰¹⁵ .		G	_			D	2	-	0
P	Α.	3	В.	1		C.	1			D.	0	E.	9
59. S	Sim	plify to the neare	st tei	n-thousandth	place	e: 1-	+(1.3)	$+\frac{(1.1)}{2}$	$\frac{3}{2}^{2}$ +	$\frac{(1.3)^3}{3!}$	$\frac{3}{4!} + \frac{(1.3)^4}{4!} +$		
A	\ .	0.2624	B.	0.2675		C.	3.66	93		D.	3.6302	E.	0.9636
60. 7	Гhe	function f is such	ch th	at $\int_{-1}^{8} f(x) dx$	x = 9.	. Wh	at is t	he va	lue o	$f \int_{-1}^{8} ($	f(x)+3dx	?	
A	١.	12	В.	36		C.	27			D.	32	E.	18

2015-2016 TMSCA Mathematics Test One Answers

1. E	21. E	41. B
2. E	22. B	42. C
3. A	23. B	43. E
4. C	24. A	44. B
5. C	25. A	45. B
6. D	26. D	46. A
7. A	27. A	47. E
8. B	28. C	48. A
9. E	29. E	49. A
10. B	30. C	50. C
11. A	31. C	51. E
12. E	32. E	52. E
13. B	33. E	53. B
14. B	34. A	54. B
15. A	35. C	55. A
16. B	36. C	56. A
17. A	37. A	57. D
18. A	38. A	58. A
19. C	39. B	59. C
20. E	40. D	60. B

2015-2016 TMSCA Mathematics Test One Selected Solutions

0

R

53. The median of any row in the arrangement shown will always be the center number. The 1, 3, 7, 13...can either be used to develop a quadratic regression $y = x^2 - x + 1$ where x is the row number and *v* is the median. For the 9^{th} row the median will be 73. An alternative would be to use the differences in the center numbers and continue the pattern 1+2=33+4=77+6=1313+8=21......57+16=73. 56. The formula for the sum of the first ncubes is $\left(\frac{n(n+1)}{2}\right)^2$, so the sum of the series will be $\left(\frac{14(15)}{2}\right)^2 - 1 - 8 = 11016$. 59. The series shown is the McClaurin series for the function $f(x) = e^x$ when x = 1.3, so $e^{1.3} \approx 3.6692967$.

TMSCA HIGH SCHOOL MATHEMATICS TEST# 2 © OCTOBER 31, 2015

GENERAL DIRECTIONS

1. About this test:

- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA 2015-2016 TMSCA Mathematics Test Two

1.	Eva	luate: $1 \div (1 + 1)$	+3) ⁻¹ ×	:4-	$-\frac{5}{8}+1^{2}$	$7 \times (32)$	$)^{0}$.								
	A.	$13\frac{3}{8}$	H	3.	$32\frac{5}{8}$		C.	$32\frac{3}{8}$		D.	$20\frac{3}{8}$		E.	$20\frac{5}{8}$	
2.	ΖA	and $\angle B$ are	supple	eme	entary.	If the	m∠A∶r	<i>n∠B</i> i	s 5:7, find	the m	easure	of the c	omplei	ment of	∠A .
	A.	24°	I	3.	21°		C.	15°		D.	18°		E.	36°	
3.	Wh	at is the great	est co	mn	non fa	ctor of	204, 510) and ϵ	646?						
	A.	17	I	3.	34		C.	19		D.	51		E.	13	
4.	Ler bike sche	oy walked fro e home at an a ool?	om his averag	ho e r	use to ate of	the sch 26 mpl	nool to p n. The	ick up total ti	his bicycle rip took 32	e at an minu	averag tes. Ho	ge rate o ow far d	of 6 mp oes Lei	h. He ro roy live	de his from the
	А.	2.6 mi	I	3.	2.8 m	ni	C.	1.6 r	ni	D.	1.9 m	i	E.	2.4 mi	
5.	At l has pair A.	Hobby Stop th a 30% off co nt and 4 brush \$35.01	he pric upon t tes, wł F	ce c to u nat 3.	of a tub ise for will h \$50.2	be of oi the pai is cost 27	l paint is int and the be after C.	s \$7.85 he brus the 8.5 \$52.	5 and the pr shes are on 5% sales tax 99	rice of sale f x has l D.	a pain for 15% been af \$57.3	t brush : 6 off. If 9 oplied?	is \$3.9: Carl b E.	5. Craft <u>y</u> uys 8 tul \$62.27	y Carl bes of
6.	Sim	plify $a^{-3} \div b^3$	$\times a^{-5}$	÷b	$^{-5} \times a^{-3}$	$b^5 \div b^5$.									
	A.	$\frac{b^3}{a^{11}}$	H	3.	$\frac{1}{a^{11}b^3}$	-	C.	$\frac{1}{ab^7}$		D.	$rac{b^7}{a^{11}}$		E.	$\frac{a}{b^7}$	
7.	Two	o parallel line	es are c	cut	by a tr	ransver	sal to fo	rm two	o consecuti	ve int	erior a	ngles wi	th mea	sures (x	² - 26)°
	and	$(5x+2)^{\circ}$. V	Vhat is	s th	e mea	sure of	the acut	e angl	e?					,	,
	A.	62°	F	3.	17°		C.	50°		D.	87°		E.	57°	
8.	The	value of y va	aries ir	ive	rsely v	with 5x	c^2 . If y	=1.2	when $x = 2$, wha	t is the	value o	of y whe	en $x = 4$?
	A.	1.2	F	3.	0.15		C.	4.8		D.	2.4		E.	0.30	
9.	The	graph of the	functi	on	f(x)	$= x^4 -$	$12x^3 + 43$	$8x^2 - 6$	4x has poi	nts of	inflect	tion whe	x = a	a and x	= <i>b</i>
	whe	ere $a < b$. W	hat is	the	value	of <i>b</i> ?									
	A.	-1	F	3.	4		C.	-2		D.	3		E.	1	
10.	Fine (nea	d the lateral s arest square in	urface nch)	are	ea of tl	he regu	ılar hexa	igonal	prism shov	vn.			\langle	$\overline{\langle}$	
	A.	495 in ²	B. 59	94 :	in ²	C. 1	1015 in ²	D.	2314 in ²	E.	1157	in ²		9 i	/11 in n
11.	Fine	d the sum of t	the ari	thn	netic n	nean, n	nedian, n	node a	nd range of	f 3, 19	9, 5, 2,	10, 35, 6	& 3.		
	А.	49	I	3.	48		C.	55		D.	52		E.	53	
12.	Wh	ich of the foll	lowing	g is	an equ	uation	of the lir	ne pass	ing throug	h (-3	.2,1.5)	parallel	to $2x$	+3y=9	?
	A.	20x + 30y =	141			C.	20x - 30	0y = -	19		E.	20x - 3	0y = -	141	

B. 20x + 30y = -19 D. 20x - 30y = 19

13. A piggy bank contains a total of 82 dimes and quarters worth \$16.45. How many dimes are in the bank?
A. 26 B. 54 C. 27 D. 41 E. 55
14. The number of integers between 1 and 54 that are relatively prime to 54 is:
A. 15 B. 17 C. 18 D. 20 E. 24
15. Classify the triangle with side lengths 17 cm, 20 cm and 32 cm.
A. Isosceles Acute B. Isosceles Obtuse C. Scalene Acute D. Scalene Obtuse E. None of these
16. What is the sum of the arithmetic series 11+8.5+6+...+(-26.5)?
A. -116 B. -124 C. 48.5 D. -270 E. -288
17. Solve sin 2x = -cos x, where
$$0 \le x < 2\pi$$
.
A. $\left\{\frac{7\pi}{6}, \frac{11\pi}{6}\right\}$ B. $\left\{\frac{\pi}{2}, \frac{3\pi}{2}\right\}$ C. $\left\{\frac{\pi}{2}, \frac{7\pi}{2}, \frac{3\pi}{2}, \frac{11\pi}{6}\right\}$ D. $\left\{\frac{\pi}{2}, \frac{\pi}{3}, \frac{3\pi}{2}, \frac{2\pi}{3}\right\}$ E. $\left\{\frac{\pi}{3}, \frac{2\pi}{3}\right\}$
18. Find the primeter of pentagon ABCDE. (nearest tenth)
A. 80.1 cm B. 68.2 cm C. 62.9 cm D. 71.0 cm E. 74.8 cm
19. $\frac{d}{d\theta}sin(3\theta^2) =$
A. $\frac{2x^2 + x - 6}{x^2 + 4x - 5} \times \frac{x^3 - 3x^2 + 2x}{4x^2 - 6x}$.
A. $\frac{x^2 - 4}{x^2 + 4x - 5} \times \frac{x^3 - 3x^2 + 2x}{4x^2 - 6x}$.
A. $\frac{x^2 - 4}{x^2 + 4x - 5} \times \frac{x^3 - 3x^2 + 2x}{4x^2 - 6x}$.
A. 77 B. 54 C. 50 D. 183 E. 55
20. Simplify $\frac{2x^2 + x - 6}{2x + 10}$ B. $\frac{x^2 - 2x}{x + 10}$ C. $\frac{x^2 - 4}{3}$ D. $\frac{3\pi}{2}$ E. $13\frac{5}{6}$
23. How many distinguishable arrangements can be made from the letters in the word "SASSAFRASS"?
A. 15 $\frac{1}{6}$ B. 56 C. $9\frac{1}{3}$ D. $3\frac{1}{2}$ E. $13\frac{5}{6}$
23. How many distinguishable arrangements can be made from the letters in the word "SASSAFRASS"?
A. 15 $\frac{1}{6}$ B. 56 C. $9\frac{1}{3}$ D. $3\frac{1}{2}$ E. $13\frac{5}{6}$
23. How many distinguishable arrangements can be made from the letters in the word "SASSAFRASS"?
A. 15 $\frac{1}{6}$ B. 56 C. $9\frac{1}{3}$ D. $30 \cos(5 - 2x) = 49$?
A. 15 $\frac{1}{6}$ B. 56 C. $9\frac{1}{3}$ D. 100 E. 6
25. Which of the following quadrant(s) does not contain a solution to $7x - 5y = 49$?
A. 15 $\frac{1}{6}$ B. 56 C. $9\frac{1}{3}$ D. 100 E. 6
25. Which of the following quadrant(s) does not contain a solution to $7x - 5y = 49$?
A. 15 $\frac{1}{6}$ B. 90720 C. 5040 D. 10080 E. 720
24. 8769

28. Jill can paint a room alone in 8 hours. She painted for the first hour by herself then her friend Kylie joined her. They finished in a total of 6 hours instead of 8. How many hours would it have taken Kylie to do the whole job alone?

	A.	20 hours	B.	18 hours	C.	15 hours	D.	12 hours	E.	10 hours
29.	3108	$ga^2b^2 + \frac{1}{2}\log a^3b$	-310	$\log ab =$						
	A.	$\log a^3 b^4 \sqrt{ab}$	B.	$-\log \frac{a^3b^3}{2}$	C.	$\log a^4 b^3 \sqrt{ab}$	D.	$\log \frac{1}{a^3 b^3}$	E.	$\log a^8 b^7 \sqrt{ab}$
30.	If \int_{-}^{1}	$f_{-3}^{8} f(x) dx = 42$, th	nen .	$\int_{-3}^{8} \left[2 + 5f(x) \right] dx$	=					
	A.	210	B.	212	C.	139	D.	218	E.	232
31.	The	equation $5x^2 - 6$.	x + k	= 0 has two positi	ive so	olutions when wh	ich o	of the following is	true	?
	A.	-1.2 < k < 1.2	B.	<i>k</i> >1.2	C.	<i>k</i> <1.8	D.	-1.2 < k < 1.8	E.	0 < k < 1.8
32.	Then	re are 84 students ber of boys rema	in tl ins c	he senior class in ' constant, how man	Геха у ne ^v	s HS senior class. w girls would hav	The to	e ratio of boys to genroll to change t	girls he ra	is 7:5. If the tio to 1:1?
	A.	24	В.	35	C.	21	D.	7	E.	14
33.	Let . sequ	x and y exist such then $xy = 2$	that	x < x < y. If 8, x	c, 24 f	form an arithmetic	c seq	uence and $x, y, 25$	5 forr	n a geometric
	A.	320	B.	400	C.	256	D.	160	E.	324
34.	Find	l C if the remaind	ler of	f $2x^3 - 7x^2 + 3x + 3$	C div	vided by $x - 4$ is 1	6.			
	A.	-236	В.	35	C.	-12	D.	7	E.	14
35.	A =	$\begin{bmatrix} 3 & 5 \\ -2 & 1 \end{bmatrix} \text{ and } B =$	$=\begin{bmatrix}2\\3\end{bmatrix}$	$\begin{bmatrix} 7 \\ -4 \end{bmatrix}$, so det <i>BA</i> =	=					
	A.	-376	В.	186	C.	-377	D.	-324	E.	203
36.	The	chords \overline{AD} and	\overline{BC}	intersect inside ci	rcle (O at point P. If A	D =	23, $AP = 5$ and B	BP =	3, find <i>CB</i> .
	A.	30	B.	27	C.	$\frac{124}{3}$	D.	33	E.	$\frac{115}{3}$
37.	The	altitudes of a tria	ngle	intersect at the						
	A.	Orthocenter	В.	Incenter	C.	Circumcenter	D.	Median	E.	Origin
38.	The	graph of $9x^2 - y^2$	$^{2}-30$	6x - 6y + 18 = 0 is	a					
	A.	Circle	В.	Hyperbola	C.	Parabola	D.	Ellipse	E.	Cartoid
39.	Johr choi	n's Ice Cream car ces of cones, hov	ries o v ma	eight gourmet flav ny different 2-sco	ors o op co	of home-made ice one choices are th	crea ere e	m every day. If t every day?	hey a	also carry four
	A.	180	B.	45	C.	220	D.	210	E.	144
40.	Two	proots of $f(x) =$	$x^{3} +$	$bx^2 + cx + d$ are 7	and	3+i. Find $b+c$	+d.			
	A.	-34	B.	-31	C.	-1	D.	-10	E.	17
41.	The	graph of the para	meti	ric equations $x = 3$	Bcosi	t and $y = 5\sin t$ is	a(n)	·		
	A.	Ellipse	B.	Hyperbola	C.	Circle	D.	Parabola	E.	Line

42. If $4^x \cdot 16^{2y} = 1$ and $7^{5x} \cdot 49^y = \frac{1}{49}$, find the value of x + y. A. $\frac{4}{9}$ B. $\frac{1}{9}$ C. $-\frac{4}{9}$ D. $\frac{1}{3}$ E. $-\frac{1}{3}$ 43. Find the digit in the millionths place of the sum of the series $1 - \frac{2}{1!} + \frac{4}{2!} - \frac{8}{3!} + \frac{16}{4!} - \dots$ A. 6 B. 5 C. 7 D. 4 E. 3 44. Let a, b and c be real numbers such that c = a + b + 8, $c^2 = a^2 + b^2$ and ab = 8. Find the value of 6c. B. 18 C. 30 D. -24 E. -30 A. 3 45. What is the angle between the hour and minute hands on a clock at 6:23 pm? A. 53.5° B. 35.5° C. 42° E. 47.5° D. 56.5° 46. Which of the following functions yields the graph shown? $y = 3\sin(\pi(x-2))$ C. $y = 6\sin(\pi x-2)$ E. $y = 3\cos(\pi(x-2))$ A. -1 $y = 3\sin(\pi x - 2)$ D. $y = 6\cos(\pi(x-2))$ B. 47. The Real value solution for $x^2 - 2x - 3 < 0$ is? C. $\{x | \{x < -3\} \cup \{x > 1\}\}$ E. $\{x | x > -1\}$ A. $\{x \mid -1 < x < 3\}$ B. $\{x | \{x < -1\} \cup \{x > 3\}\}$ D. $\{x | -3 < x < 1\}$ 48. Find the smallest positive angle between the vectors $v_1 = \langle -16, 3 \rangle$ and $v_2 = \langle 11, 9 \rangle$. (nearest degree) A. 29° B. 23° C. 130° D. 40° E. 140° 49. Find the slope of $2x^2 + 3y^2 = 29$ at the point (-1,3). B. $-\frac{9}{2}$ C. $-\frac{8}{3}$ D. $-\frac{2}{9}$ A. $\frac{9}{2}$ E. $\frac{2}{2}$ 50. Given triangle ABC such that $m \angle A = 60^{\circ}$, AC = 17 cm and BC = 15 cm there are two possible lengths for the side AB. Find the sum of these two lengths. E. $\frac{17\sqrt{3}}{2}$ D. 15 A. $17\sqrt{3}$ C. $15\sqrt{3}$ B. 17 51. Let $f(x) = \frac{2x^2 - 7x + 5}{x - 8}$ and s(x) be the slant asymptote of f. Find the value of s(-6). A. 12 E. -12 B. -3 C. 77 D. -35 52. Find the value of A + B + C, where A, B and C are non-negative integers such that: $\frac{41}{8} = A + \left| \frac{1}{B + \frac{1}{C + 1}} \right|$ A. 12 B. 7 C. 15 D. 18 E. 9

53.	Car	men has white ma	arble	s and yellow marb	oles i	in a bag. The prol	oabil	ity that she will se	elect	a white marble
	is $\frac{1}{4}$	If 30 white ma	rbles	are added to the l	bag,	the probability of	sele	cting a white mar	ble b	becomes $\frac{1}{3}$.
	How	w many yellow m	arble	es are in the bag?						
	A.	180	B.	60	C.	90	D.	240	E.	270
54.	Let	$f_0 = 0, f_1 = 1, f_2$	$\frac{1}{2} = 1$	$f_3 = 2, f_4 = 3, \ldots$	be	the terms of the F	ïbon	acci sequence. Fi	nd ($f_7\big)^2 + \big(f_8\big)^2 .$
	A.	233	B.	1597	C.	34	D.	610	E.	55
55.	If f	$f(x) = ax^5 + bx^3 - $	10 aı	nd $f(3) = -40$, th	en j	f(-3) =				
	A.	20	B.	-30	C.	-20	D.	-50	E.	30
56.	Fine	d the area of the c	onve	ex quadrilateral wi	th ve	ertices (2,7), (4,	1), ((-6,2) and $(-6,2)$	•	
	A.	24	B.	27.5	C.	60.5	D.	59.5	E.	30.5
57.	Hov	w many solutions	(<i>x</i> , y) are there to $5x + $	-3y	= 900 where x and	y ar	e both positive int	teger	rs?
	A.	61	B.	58	C.	60	D.	59	E.	62
58.	If y	y = 9 - x and $xy =$:16 t	hen $ x-y =$						
	A.	$3\sqrt{7}$	B.	$\sqrt{17}$	C.	4	D.	7	E.	$\sqrt{33}$
59.	tan	$\theta > 0$ and $\sin \theta <$	0. 1	Where will θ term	ninat	te?				
	A.	QI	В.	QII	C.	QIII	D.	QIV	E.	y - axis
60.	444	$h_5 + 777_8 - 222_3 =$		10 ·						
	A.	400	B.	609	C.	630	D.	398	E.	611

1. C	21. D	41. A
2. C	22. C	42. E
3. B	23. C	43. B
4. A	24. A	44. B
5. E	25. A	45. A
6. B	26. B	46. E
7. A	27. В	47. A
8. E	28. A	48. C
9. B	29. C	49. E
10. B	30. E	50. B
11. D	31. E	51. B
12. B	32. E	52. A
13. C	33. A	53. A
14. B	34. C	54. D
15. D	35. C	55. A
16. B	36. D	56. C
17. C	37. A	57. D
18. C	38. B	58. B
19. A	39. E	59. C
20. A	40. B	60. B

ons

4. $\frac{d}{6} + \frac{d}{26} = \frac{32}{60}$ because the two fractions on the right side of the equation represent the times for the trip and return trip. The solution to the equation is 2.6 miles. 21. The average rate of change will just be the slope of the secant line connecting the endpoints of the function on the given interval. $m = \frac{f(7) - f(2)}{7 - 5} = 183$. 23. There are a total of 10 letters with "S" repeating 5 times and "A" repeating thrice, so the number of distinguishable arrangements will be: $\frac{10!}{(5!)(3!)} = 5040$. 28. Jill's rate is $\frac{1}{8}$ of a room per hour. Let Kylie's rate be r. $\frac{1}{8} + 5\left(\frac{1}{8} + r\right) = 1$. Solving for r gives a rate for Kylie of $\frac{1}{20}$ of a room per hour, so it will take her 20 hours to do the job is 17. alone. 30. $\int_{-3}^{8} \left[2 + 5f(x)\right] dx = \int_{-3}^{8} 2dx + 5\int_{-3}^{8} f(x) dx =$ 22 + 5(42) = 232. 33. Because of the definition of an arithmetic sequence, $x = \frac{8+24}{2} = 16$. We can find the ratio of the terms in the geometric sequence using $16r^2 = 25$, so $r = \frac{5}{4}$ and $y = 16\left(\frac{5}{4}\right) = 20$. xy = 320. 39. There are 8 flavors and we are going to order 2 scoops, so the number of choices for ice cream is $_{8+2-1}C_2 = 36$. There are also 4 choices for cones, so the total number of options is 4(36) = 144. 43. This is the power series for $f(x) = e^x$ when x = -2. $e^{-2} \approx 0.1353352832$ with the 5 being the digit in the millionths place.

44. A little bit of algebraic manipulation of the first equation yields: $(c-8)^2 = (a+b)^2$ then $c^{2}-16c+64 = a^{2}+2ab+b^{2}$ using substitution from the equation $c^2 = a^2 + b^2$ $c^2 - 16c + 64 = c^2 + 2ab$ then $-16c + 64 = 2ab \rightarrow -16c + 64 = 16$, so c = 3 and 6c = 18. 48. $\cos\theta = \frac{(-16)(11) + (3)(9)}{\sqrt{(256+9)(121+81)}}$, so $\theta \approx 130.09^{\circ}$ 49. $4x + 6y \frac{dy}{dx} = 0$, so $-4 + 18 \frac{dy}{dx} = 0$. Solving for $\frac{dy}{dx} = \frac{2}{9}$. 50. Use the law of cosines to set up the quadratic equation: $225 = 289 + x^2 - 34x \cos 60$, where x = AB. Arranging the equation to have a 0 on one side: $0 = x^2 - 17x + 64$, so the sum of the roots (or two possible lengths) 52. $\frac{41}{8} = 5 + \frac{1}{8} = 5 + \frac{1}{7 + \frac{1}{2}}$, so 5+7+0=12. 55. $f(3) = ax^5 + bx^3 - 10 = -40$, so for x=3, $ax^5 + bx^3 = -30$. Because both terms have odd exponents, for x = -3, $ax^{5} + bx^{3} = 30$, and f(-3) = 30 - 10 = 20. 58. $(x+y)^2 = x^2 + 2xy + y^2 = 81$, and $(x-y)^2 = x^2 - 2xy + y^2$, or $(x+y)^2 - 4xy$ so that $(x-y)^2 = 81-4(16) = 17$ and $|x-y| = \sqrt{17}$.

TMSCA HIGH SCHOOL MATHEMATICS TEST#3 © NOVEMBER 7, 2015

GENERAL DIRECTIONS

1. About this test:

- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA 2015-2016 TMSCA Mathematics Test Three

- 1. Evaluate: $5!+12(3-10) \div 20 \times 15$.A. 183B. 119C. 120D. 70E. 57
- 2. Caroline had a rope that was 15 feet long. She cut off three pieces such that the ratio of lengths of the pieces were 2:5:10 with 10 inches of string left over. How long was the longest piece?
 A. 8 ft. 4 in.
 B. 7 ft. 10 in.
 C. 11 ft. 6 in.
 D. 8 ft. 10 in.
 E. 10 ft. 8 in.
- 3. The distances between the hash marks () are equal. Find P+Q+R+S.

A. 2.4

- 4. What is the median of the first five perfect numbers?

 A. 262
 B. 4312
 C. 6711798
 D. 496
 E. 8128
- 5. Evaluate: $\frac{(x+2)!}{(x-2)!} \div \frac{x!}{(x-1)!}$. A. $x^5 + 2x^4 - x^3 - 2x^2$ B. $x^3 + 2x^2 - x - 2$ C. $x^4 - 5x^2 + 4$ D. $x^6 + 4x^2$
- 6. Which of the following is the standard form of the equation of the perpendicular bisector of \overline{PQ} ?
 - A. 5x+7y=3B. 7x-5y=-17C. 7x-5y=-10D. 5x-7y=-18E. 7x+5y=-3
- 7. Which of the following properties, if any is not used in this example?

$$5a-5a+7\times\left(3\times\frac{4}{7}\right) = a(5-5)+7\times\left(3\times\frac{4}{7}\right)$$
$$= a\times0+7\times\left(3\times\frac{4}{7}\right)$$
$$= a\times0+7\times\left(3\times\frac{4}{7}\right)$$
$$= 0+7\times\left(3\times\frac{4}{7}\right)$$
$$= 0+7\times\left(\frac{4}{7}\times3\right)$$
$$= 0+\left(7\times\frac{4}{7}\right)\times3$$
$$= 0+4\times3$$
$$= 0+12$$
$$= 12$$

A. Distributive B. Commutative C. Associative D. Substitution E. All are used
8. The point of intersection of the three perpendicular bisectors of a triangle is called the______.
A. Center B. Circumcenter C. Centroid D. Incenter E. Orthocenter

E. $x^4 - 5x^2 + 5$

35	. A sa pacl	ales clerk is pack kages of 5 pens c	aging an he	g blue, e make	red a ?	nd bla	ack po	ens fo	or a b	ack-to	-schoo	ol sale.	How man	ny di	fferent
	A.	21	В.	56			C.	28			D.	56		E.	35
36	. Two	proots of $f(x) =$	$x^{3} +$	$bx^2 + c$	x + d	are 5	and	3 + i.	Fine	b+c	r+d.				
	A.	15	В.	-11			C.	-21			D.	-36		E.	26
37	. Let	f be continuous	on th	e close	d int	terval	[a,b]	and	diffe	rential	ole on	the ope	en interval	(a,b). If
	f(a	f(b) = f(b), then t	here	is at le	ast or	ne nur	nber	<i>c</i> in (a,b)	such	that f	r'(c) = c	0.		
	A.	Sandwich Theor	em		C.	Rolle	's The	eorem				E. F	undamental	Theo	orem of Calculus
	В.	Intermediate Valu	e The	eorem	D.	Fund	ament	al The	eorem	of Al	gebra		7 с	cm/~	24 cm
38	. Calo	culate the total vo	olume	e of the	e triar	ngular	r prisi	n sho	wn.						10 cm
	A.	728 cm^3 B.	644	4 cm^3	C	C. 92	24 cm	1 ³	D.	840 c	cm^3	E.	560 cm^3		25 cm
39	. Line	e <i>m</i> has a slope of	f -5 a	nd pas	ses th	nrougl	h the	point	(-4,	6). L	ine <i>n</i> j	passes	through the	e poi	nts $(1,-1)$ and
	(4,8	B). Line <i>m</i> inters	ects]	line <i>n a</i>	ut (<i>x</i> ,	y). I	Find	x + y	•						
	A.	6.5	В.	-6.5			C.	-5.25	5		D.	-10.25	5	E.	-9
40	. Givo num	en that the set of abers in row 9.	natur	ral num 20	10 22	4 12 24	nue in 2 6 14 26	8 16 28	triang 18 30	gular p 32	oattern	shown (row (row (row (row	1) 2) 3) 4)	nd the	e median of the
	A.	166	B.	134			 С.	154			D.	146)	E.	170
41	. The	ratio of length to	wid	th of a	recta	ngle i	is 5:3	and t	he ar	ea is 4	13.35 i	n ² . Wl	nat is the p	erim	eter of the
	rect	angle?	п	262:			C	01.7	:		р	12.0 :		Б	27.2 :
	А.	13.0 III	D.	20.51	11		U.	21.7	111		D.	13.21	[]	E.	27.2 111
42	. The	function $f(x) =$	$\frac{2x^3}{r^2}$	$\frac{1}{8}$ is in	creas	ing at	whic	h of t	the fo	llowi	ng valı	ues of <i>x</i>	c?		
	A.	-5	\mathbf{B} .	-4			C.	-1			D.	0		E.	2
43	If $\frac{2}{5}$	$\frac{4x-5}{x-2} - \frac{5x+2}{2x-5} = \frac{4}{2x-5}$	$\frac{Ax^2}{Px^2}$ +	$\frac{Bx+C}{Ox+B}$	$\frac{7}{2}$, the	en $\frac{A}{P}$	+B+ +O+	$\frac{C}{R} =$							
	A.	57 ¹	В.	1			C.	2			D.	8		E.	2^{2}
		$-57\frac{10}{10}$		$\frac{1}{3}$				$\overline{5}$				$-\frac{1}{9}$			$\frac{2}{9}$
44	. Carr mor	men Cents has 75 e nickels than qu	5 nick arter	kels, di s. Hov	mes a v mu	and qu ch mc	uarter	rs. Sh loes s	e has he ha	three ave?	times	as mai	ny nickels	as di	mes and two
	A.	\$10.90	В.	\$10.5	0		C.	\$11.	60		D.	\$11.9	0	E.	\$7.60
45	. The and	triangles ABC a $RP = 36$. Find	nd P(AC +	QR exi • <i>QR</i> .	st suc	ch tha	t∠A	$BC \cong$	∠QI	<i>RP</i> ,∠	ACB ≘	$\cong \angle QP$	R, AB = 12	2, BC	C = 27, QP = 48
	A.	36	В.	42			C.	48			D.	52		E.	54
46.	The	point(3,-11) lies	s on a	a circle	with	cente	er (8,	-5).	Whi	ch of	the fol	lowing	points lies	s insi	de the circle?
	A.	(15,2)	В.	(13,3)		C.	(16,	-5)		D.	(16,0)	E.	(15,-8)

47. Fir	nd the area of the t	riangle wit	h vertices $(-3, 3)$	5), (6,12) a	and $(4, -1)$.			
A.	51.5	B. 46.5	C.	49	D.	47.5	E.	48
48. Me the	eredith set out to r en 800 m on a beau	ow on a lak ring of 52°.	te. She rowed 7 How far is she	750 m on a from her c	bearing of 7 original start	5°, then 250 m ing point? (nea	on a be rest me	earing of 25°, ter)
А.	1800 m	B. 9551	m C.	1/23 m	D.	1328 m	E.	1524 A
49. Cin El	The formula $F = 9$ inches. (near	ficular dian rest tenth)	neters and a cho	ord, find Al	E if CF =11	inches and		
A.	7 in B.	9.9 in 7^{x-y} 720	C. 6.3 in	D.	8.7 in	E. 5.6 in	D	FB
50. If y	$9^{10} = 6561$ and 2	$P = \frac{1}{29}$, then $x - y = C$	10	Л	4	Б	C C
A. 51. Co	rnelius has a bag	b. o that contair	us 6 blue chips.	5 red chips	and 2 green	chips. If he se	ב. elects tw	o chips without
rep	placement, what is	the probab	oility that he wil	l draw two	of the same	color?		I
A.	65	B. <u>5</u>	C.	4	D.	<u>13</u>	E.	<u>1</u>
	132	13		13		36		3
52. WI	nat is the constant	term in the	binomial expa	nsion of $\left(3\right)$	$\left(x^3-\frac{1}{x}\right)^8$?			
A.	5670	B. 70	C.	28	D.	6561	E.	252
53. Cla	assify the graph of	$f^{2} 3x^{2} - v^{2} +$	-18x + 6y = 9					
Δ	Develore						Б	
11.	Paradola	B. Ellip	se C.	Hyperbol	la D.	Circle	E.	None of These
54. Th	e dots are 3 units	B. Ellip	se C.	Hyperbol ntally. Find	la D. I the area of	Circle the shaded reg	E.	None of These
54. The	e dots are 3 units 36 units ² B.	B. Ellip apart vertic 72 units ²	ally and horizon C. 34 uni	Hyperbol $tally$. Find $tally^2$ D.	la D. I the area of 64 units ²	the shaded reg E. 39 units	ion. 3^2	None of These
54. The A.	e dots are 3 units a 36 units ² B.	B. Ellip apart vertic 72 units ²	ally and horizon C. 34 uni	Hyperbol $fits^2$ D.	a D. I the area of 64 units ²	the shaded reg E. 39 units	E. ion. s^2	None of These
54. The A. 55. Ho	e dots are 3 units a 36 units ² B.	B. Ellip apart vertic 72 units^2 are there f	c. ally and horizon C. 34 unition	Hyperbol ntally. Find its ² D. 3x+5y=1	la D. l the area of 64 units ² 25 where bo	The shaded reg E. 39 units x and y are r	E. ion. 3 ² non-neg	None of These ative integers?
54. The A. 55. Ho A.	Parabola e dots are 3 units a 36 units ² B. w many solutions 9	B. Ellip apart vertic 72 units ² are there f B. 10	se C. ally and horizon C. 34 unit for the equation C.	Hyperbol ntally. Find its ² D. 3x+5y=1 8	a D. d the area of 64 units ² 25 where bo D.	 Circle the shaded reg E. 39 units th x and y are r 7 	E. ion. 3 ² non-neg E.	None of These ative integers?
54. The A. 55. Ho A. 56. If	Parabola e dots are 3 units a 36 units ² B. w many solutions 9 $\frac{4x+13}{x^2+2x-3} = \frac{A}{x+3}$	B. Ellip apart vertic 72 units ² are there f B. 10 $\frac{B}{3} + \frac{B}{x-1}$, th	se C. ally and horizon C. 34 unit for the equation C. en $AB =$	Hyperbol intally. Find its ² D. 3x+5y=1 8	la D. l the area of 64 units ² 25 where bo D.	 Circle the shaded reg E. 39 units oth x and y are r 7 	E. ion. 3 ² non-neg E.	None of These ative integers?
54. The A. 55. Ho A. 56. If A.	Parabola e dots are 3 units a 36 units ² B. we many solutions 9 $\frac{4x+13}{x^2+2x-3} = \frac{A}{x+3}$	B. Ellip apart vertic 72 units ² are there f B. 10 $B + \frac{B}{x-1}$, th B. <u>17</u>	se C. ally and horizon C. 34 un for the equation C. en $AB =$ C.	Hyperbol ntally. Find its ² D. 3x+5y=1 8 <u>-17</u>	la D. l the area of 64 units ² 25 where bo D. D.	the shaded reg E. 39 units oth x and y are r 7 $\frac{17}{2}$	E. 3 ² non-neg E. E.	None of These $\frac{17}{17}$
54. The A. 55. Ho A. 56. If A.	Parabola e dots are 3 units a 36 units ² B. w many solutions 9 $\frac{4x+13}{x^2+2x-3} = \frac{A}{x+3}$	B. Ellip apart vertic 72 units ² are there f B. 10 $\frac{B}{3} + \frac{B}{x-1}$, th B. $-\frac{17}{16}$	se C. ally and horizon C. 34 unit for the equation C. en $AB =$ C.	Hyperbol ntally. Find its ² D. 3x + 5y = 1 8 $-\frac{17}{4}$	la D. l the area of 64 units ² 25 where bo D. D.	Eircle the shaded reg E. 39 units oth x and y are r 7 $\frac{17}{4}$	E. ion. 3 ² non-neg E. E.	None of These ative integers? $\frac{17}{16}$
54. The A. 55. Ho A. 56. If A. 57. Th	Parabola e dots are 3 units a 36 units ² B. w many solutions 9 $\frac{4x+13}{x^2+2x-3} = \frac{A}{x+3}$ e square root of 24	B. Ellip apart vertic 72 units ² are there f B. 10 $\frac{B}{3} + \frac{B}{x-1}$, th B. $-\frac{17}{16}$ 07 in base 9	se C. ally and horizon C. 34 unit for the equation C. en $AB =$ C.	Hyperbol ntally. Find its ² D. 3x+5y=1 8 $-\frac{17}{4}$	la D. l the area of 64 units ² 25 where bo D. D.	Circle the shaded reg E. 39 units oth x and y are r 7 $\frac{17}{4}$	E. ion. 3 ² non-neg E. E.	None of These ative integers? $\frac{17}{16}$
54. The A. 55. Ho A. 56. If A. 57. Th A.	Parabola e dots are 3 units a 36 units ² B. w many solutions 9 $\frac{4x+13}{x^2+2x-3} = \frac{A}{x+3}$ e square root of 24 15 ₉	B. Ellip apart vertic 72 units ² are there f B. 10 $\frac{B}{3} + \frac{B}{x-1}$, th B. $-\frac{17}{16}$ 07 in base 9 B. 17 ₉	se C. ally and horizon C. 34 un for the equation C. en $AB =$ C. 9 is: C.	Hyperbol ntally. Find its ² D. 3x + 5y = 1 8 $-\frac{17}{4}$ 16_9	la D. l the area of 64 units ² 25 where bo D. D.	Circle the shaded reg E. 39 units oth x and y are r 7 $\frac{17}{4}$ 14_9	E. s ² non-neg E. E.	None of These ative integers? $\frac{17}{16}$ 13_9
54. The A. 55. Ho A. 56. If A. 57. Th A. 58. If	Parabola e dots are 3 units a 36 units ² B. w many solutions 9 $\frac{4x+13}{x^2+2x-3} = \frac{A}{x+3}$ e square root of 24 15 ₉ y ² = -5-12i and	B. Ellip apart vertic 72 units ² are there f B. 10 $\frac{B}{3} + \frac{B}{x-1}$, th B. $-\frac{17}{16}$ 07 in base 9 B. 17 ₉ $y^3 = 46 + 9$	se C. ally and horizon C. 34 unit for the equation C. en $AB =$ C. i is: C. i where $y = a + i$	Hyperbol ntally. Find its ² D. 3x + 5y = 1 8 $-\frac{17}{4}$ 16_9 <i>bi</i> then <i>a</i> -	a D. a the area of 64 units^2 25 where bo D. D. + b =	Circle the shaded reg E. 39 units oth x and y are r 7 $\frac{17}{4}$ 14_9	E. ion. 3 ² non-neg E. E.	None of These ative integers? 6 $\frac{17}{16}$ 13_9
 54. The A. 55. Ho A. 56. If A. 57. Th A. 58. If A. 	Parabola e dots are 3 units a 36 units ² B. w many solutions 9 $\frac{4x+13}{x^2+2x-3} = \frac{A}{x+3}$ e square root of 24 15 ₉ $y^2 = -5 - 12i$ and 1	B. Ellip apart vertic 72 units ² are there f B. 10 $\frac{B}{3} + \frac{B}{x-1}$, th B. $-\frac{17}{16}$ 07 in base 9 B. 17 ₉ $y^3 = 46 + 9$ B38	se C. ally and horizon C. 34 unit for the equation C. en $AB =$ C. i where $y = a +C.$	Hyperbol ntally. Find its ² D. 3x + 5y = 1 8 $-\frac{17}{4}$ 16_9 <i>bi</i> then <i>a</i> -5	a D. a D. b the area of 64 units^2 25 where bo D. D. +b = D.	Circle the shaded reg E. 39 units oth x and y are r 7 $\frac{17}{4}$ 14_9 -62	E. ion. 3 ² non-neg E. E.	None of These ative integers? 6 $\frac{17}{16}$ 13_9 6
 54. The A. 55. Ho A. 56. If A. 57. Th A. 58. If A. 59. 4³ 	Parabola e dots are 3 units a 36 units ² B. w many solutions 9 $\frac{4x+13}{x^2+2x-3} = \frac{A}{x+3}$ e square root of 2 15 ₉ $y^2 = -5 - 12i$ and 1 $+5^3 + -+12^3 + 13$	B. Ellip apart vertic 72 units ² are there f B. 10 $\frac{B}{3} + \frac{B}{x-1}$, th B. $-\frac{17}{16}$ 07 in base 9 B. 17 ₉ $y^3 = 46 + 9$ B38 $^3 + 14^3 + 15$	se C. ally and horizon C. 34 unit for the equation C. en $AB =$ C. i where $y = a +C.i$ where $y = a +C.$	Hyperbol ntally. Find its ² D. 3x + 5y = 1 8 $-\frac{17}{4}$ 16_9 <i>bi</i> then $a - 5$	a D. a D. b the area of 64 units^2 25 where boy D. D. +b = D.	Circle the shaded reg E. 39 units oth x and y are r 7 $\frac{17}{4}$ 14_9 -62	E. ion. 3 ² non-neg E. E.	None of These ative integers? $\frac{17}{16}$ 13_9 6
 54. The A. 55. Ho A. 55. Ho A. 56. If A. 57. Th A. 58. If A. 58. If A. 59. 4³ A. 	Parabola e dots are 3 units a 36 units ² B. w many solutions 9 $\frac{4x+13}{x^2+2x-3} = \frac{A}{x+3}$ e square root of 24 15 ₉ $y^2 = -5 - 12i$ and 1 $+5^3 + + 12^3 + 13$ 14400	B. Ellip apart vertic 72 units ² are there f B. 10 $\frac{B}{3} + \frac{B}{x-1}$, th B. $-\frac{17}{16}$ 07 in base 9 B. 17 ₉ $y^3 = 46 + 9$ B38 $^3 + 14^3 + 15$ B. 1098	se C. ally and horizon C. 34 unit for the equation C. en $AB =$ C. i where $y = a +C.39$ C.	Hyperbol ntally. Find its ² D. 3x + 5y = 1 8 $-\frac{17}{4}$ 16_9 <i>bi</i> then $a - 5$ 11025	a D. a D. b the area of 64 units^2 25 where bo D. D. +b = D. D.	Circle the shaded reg E. 39 units oth x and y are r 7 $\frac{17}{4}$ 14_9 -62 14364	E. ion. s ² non-neg E. E. E.	None of These ative integers? $\frac{17}{16}$ 13_9 6 2744
 54. The A. 55. Ho A. 55. Ho A. 56. If A. 57. Th A. 58. If A. 59. 4³ A. 60. WI 	Parabola e dots are 3 units a 36 units ² B. w many solutions 9 $\frac{4x+13}{x^2+2x-3} = \frac{A}{x+3}$ e square root of 24 15 ₉ $y^2 = -5 - 12i$ and 1 $+5^3 + + 12^3 + 13$ 14400 hat is the area of a	B. Ellip apart vertic 72 units ² are there f B. 10 $\frac{B}{x-1}$, th B. $-\frac{17}{16}$ 07 in base 9 B. 17 ₉ $y^3 = 46+9$ B38 $^3+14^3+15$ B. 1098 regular be	se C. ally and horizon C. 34 unit for the equation C. en $AB =$ C. 9 is: <i>i</i> where $y = a +$ C. 9 C. 3 Solution 9 C. xagon in terms	Hyperbol ntally. Find its ² D. 3x + 5y = 1 3x + 5y = 1 $-\frac{17}{4}$ 16_9 <i>bi</i> then <i>a</i> -5 11025 of the lengt	ta D. 1 the area of 64 units ² 25 where bo D. D. +b = D. th of the apo	Circle the shaded reg E. 39 units oth x and y are r 7 $\frac{17}{4}$ 14_9 -62 14364 them, <i>a</i> ?	E. ion. 3 ² non-neg E. E. E. E.	None of These ative integers? 6 $\frac{17}{16}$ 13_9 6 2744
 54. The A. 55. Ho A. 55. Ho A. 56. If A. 57. Th A. 58. If A. 59. 4³ A. 60. WI A. 	Parabola e dots are 3 units a 36 units ² B. w many solutions 9 $\frac{4x+13}{x^2+2x-3} = \frac{A}{x+3}$ e square root of 24 15 ₉ $y^2 = -5 - 12i$ and 1 $+5^3 + + 12^3 + 13$ 14400 hat is the area of a $2a^2\sqrt{3}$	B. Ellip apart vertic 72 units ² are there f B. 10 $\frac{B}{3} + \frac{B}{x-1}$, th B. $-\frac{17}{16}$ 07 in base 9 B. 17 ₉ $y^3 = 46+9$ B38 $^3 + 14^3 + 15$ B. 1098 regular he. B. $4a^2$,	se C. ally and horizon C. 34 unit for the equation C. en $AB =$ C. i where $y = a +C.i$ where $y = a +C.j$ C. j C.	Hyperbol htally. Find its ² D. 3x + 5y = 1 8 $-\frac{17}{4}$ 16_9 <i>bi</i> then $a - 5$ 11025 of the lengt $3a^2\sqrt{3}$	la D. l the area of 64 units^2 25 where box D. D. $+b =D.h of the apoD.$	Circle the shaded reg E. 39 units oth x and y are r 7 $\frac{17}{4}$ 14_9 -62 14364 them, a? $3a^2\sqrt{3}$	E. ion. 3 ² non-neg E. E. E. E.	None of These ative integers? 6 $\frac{17}{16}$ 13_9 6 2744 $3a^2\sqrt{3}$

1. E	21. B	41. E
2. A	22. C	42. A
3. E	23. E	43. B
4. D	24. B	44. B
5. B	25. B	45. D
6. D	26. C	46. E
7. E	27. D	47. A
8. B	28. A	48. C
9. B	29. A	49. C
10. E	30. D	50. B
11. E	31. C	51. E
12. A	32. D	52. E
13. A	33. E	53. C
14. D	34. B	54. B
15. E	35. A	55. A
16. D	36. C	56. B
17. B	37. C	57. D
18. A	38. D	58. A
19. A	39. E	59. D
20. C	40. D	60. A

TMSCA HIGH SCHOOL MATHEMATICS TEST#4 © NOVEMBER 14, 2015

GENERAL DIRECTIONS

1. About this test:

- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA 2015-2016 TMSCA Mathematics Test Four

		. ,		8						
	A.	$18\frac{3}{8}$	B.	$66\frac{3}{8}$	C.	$36\frac{3}{8}$	D.	$20\frac{3}{8}$	E.	$20\frac{5}{8}$
2.	$\angle A$ and $\angle B$ are supplementary. If the $m \angle A : m \angle B$ is 7:8, find the measure of the complement of $\angle A$.									
	A.	12°	B.	6°	C.	15°	D.	96°	E.	84°
3.	Wh	at is the least com	mon	multiple of 204,	510 a	and 646?				
	A.	29070	B.	58140	C.	329460	D.	9690	E.	19380
4.	Lero bike scho	oy walked from h e home at an avera ool? (nearest tenth	is ho age r 1)	use to the school ate of 26 mph.	to pio The to	ck up his bicycle a otal trip took 33 n	at an ninut	average rate of 5 es. How far does	mph Lero	. He rode his by live from the
	A.	2.6 mi	B.	2.8 mi	C.	1.6 mi	D.	2.9 mi	E.	2.3 mi
5.	At I 30% and A	Hobby Stop the pr 6 off coupon to us 4 brushes, what w \$69 92	rice o se for will h B	of a tube of oil part the brushes and the cost be after the \$50.27	int is the pa le 8.5	\$7.85 and the prid aints are on sale f % sales tax has be \$52 99	ce of or 15 een a D	a brush is \$3.95. % off. If Carl bu pplied? \$57 39	Cra ys 8 E	fty Carl has a tubes of paint \$62 27
6	Sim	where $a^{-3} \times h^3 \div a^{-3}$	$^{5} \times h^{-}$	$^{-5} \div a^{-3} \times b^5$	с.	<i>ф52.уу</i>	р.	<i>401.09</i>	ц.	\$0 2.2 7
0.	5111		~0	h^3		2.5		b^7		а
	A.	$a^{5}b^{3}$	В.	$\frac{a}{a^5}$	C.	$a^{3}b^{5}$	D.	$\frac{a}{a^{11}}$	E.	$\overline{b^7}$
7.	Two	o parallel lines are	e cut	by a transversal t	o for	m two alternate in	iterio	r angles with mea	asure	$(x^2 - 26)^{\circ}$
	and	$(3x+2)^\circ$. What	is th	e sum of the two	angle	e measures?				
	A.	180°	B.	90°	C.	92°	D.	46°	E.	23°
8.	Wh	at is the distance l	betw	een the point (3,7	7) an	d the line $12x + 5$	y = 2	7?		
	A.	$\frac{98}{169}$	B.	$\frac{44}{169}$	C.	$7\frac{7}{13}$	D.	$4\frac{7}{12}$	E.	$3\frac{5}{13}$
9.	The	graph of $f(x) =$	x^4-	$12x^3 + 48x^2 - 64x$	r has	critical points wh	ien <i>x</i>	x = a and $x = b$ where $x = b$ where $a = b$ where a	nere	a < b. What is
	the	value of <i>b</i> ?								
	A.	1	В.	2	<u> </u>		D.	4	E.	12
10.	. A ri hyp	ght triangular pris otenuse of 8 inche	sm h es. F	as a height of $4\sqrt{3}$	2 inc	hes and the base i	s a 3	0°- 60°- 90° trian	gle v	vith a
	A.	$16\sqrt{6}$	B.	$32\sqrt{6}$	C.	32	D.	$16\sqrt{5}$	E.	$32\sqrt{3}$
11.	11. Gary gets a job where he earns \$300 per week plus a 10% commission on all his sales. The best model for									
		gross earnings as	a rur B	Exponential	C	Quadratic	р	Logistic	F	Logarithmic
10	л. Del	Lillean	р.	dinatas (5 6)	U.		ש.	Lugion	ш.	
12.	12. Points r and Q have coordinates (-3,0) and (7,-10) respectively. Which of the following is an equation of								is an equation of	
	the	perpendicular bise	ector	of PQ?			_		_	•
	A.	3x - 4y = 5	В.	4x + 3y = -2	C.	3x - 4y = -39	D.	3x - 4y = 61	E.	3x - 4y = 11

13.	Jay' age.	s current age is ¹ What is Jay's c	4 of l	nis mother [*] t age?	's age.	In 10) years, J	ay's age w	vill ł	be 2 years less that	an ½	his mother's
	A.	7	В.	9		C.	8]	D.	15	E.	12
14.	The	number of integ	gers b	etween 1 a	nd 48 t	that a	re relativ	ely prime	to 4	8 is:		
	A.	14	В.	15		C.	17]	D.	18	E.	20
15.	The <i>KN</i>	medians of triar $=$ cm.	ngle <i>k</i>	CLM interse	ect at p	oint l	V. If the	length of t	the 1	median from <i>K</i> to	\overline{LM}	is 14.4 cm then
	A.	9.6	B.	7.2		C.	4.8		D.	10.8	E.	12.0
16.	Wha	at is the sum of t	he se	ries 57–19	9 + 6.3 -	-2.1+	?					
		494		171		0	172		D	380	Б	171
	A.	9	В.	4		C.	3	-	D.	9	E.	2
17.	Whi	ich of the follow	ing h	as an ampl	itude o	of -3, j	period of	$\frac{2}{5}$, phase	shi	ft 1 and displacen	nent	of -4?
	A.	$4-3\sin(5\pi x-$	1)		C. $\frac{1}{2}$	$\frac{1}{5} - 4s$	$\sin(3\pi x -$	+1)		E. $-4-3\sin^2$	(5π)	$(x-5\pi)$
	B.	$-3-4\sin(5\pi x)$	$+5\pi$)		D. $\frac{1}{4}$	$\frac{1}{5} + 3s$	$\sin(4\pi x)$	$-4\pi)$				
18.	A da Wha	art lands random at are the odds it	ly on lands	the figure s on the sha	compo aded re	osed o egion	of a penta ? (neares	agon inscri t hundredt	ibed h)	in circle.	K	
	A.	0.243 B	. 0.3	321	C. 0	.757	Γ) . 0.127		E. 0.282		
19.	tan ² sec	$\frac{t^2}{2t} =$										Ŭ
	A.	$\sec t + \cos t$	В.	$\csc t + \sin t$	n <i>t</i>	C.	$\sec t - c$	$\cos t$	D.	$\sec t - \sin t$	E.	$\csc t - \sin t$
20.	$\frac{4x^3}{3}$	$\frac{-4x^2-9x+9}{3x^2-8x+5}$	$\frac{2x^2}{9x^2}$	$\frac{+5x+3}{-30x+25} =$	=							
	A.	$\frac{3x-5}{x+1}$	B.	$\frac{6x^2 - 9x}{x + 1}$	-15	C.	$\frac{2x-3}{x-1}$		D.	$\frac{6x^2-19x+15}{x+1}$	E.	$\frac{3x-5}{x-1}$
21.	Find	l the average rat	e of c	hange for	f(x) =	$= 3x^3 -$	$-2x^2+5$	on the int	erva	ıl [2,22]		
	A.	8434	B.	4991		C.	1548		D.	3646	E.	480
22.	Usir	ng Pascal's trian	gle as	shown be	low, fi	nd the	e sum all	the numb	ers i	n rows 0 through	10.	
				1 1 1 3	1 1 2 3 	1	1	(row 0) (row 1) (row 2) (row 3) 		C		
	A.	2047	B.	4095		C.	2048		D.	1023	E.	4096
23.	Hov	v many distingui	ishabl	e arrangen	nents c	an be	made fr	om the lett	ters	in the word "PRO)BAI	BILITY"?
	A.	39916800	В.	19958400)	C.	362880]	D.	181440	E.	9979200
24.	867	$_9 = k_3$. Find the	sum	of the digit	ts in <i>k</i> .							
	A.	9	В.	8		C.	7]	D.	10	E.	6

25. Which of the following quadrant(s) does not contain a solution to $7x - 5y \ge -49$?

A. QIV
B. QI & QII
C. QIII & QIV
D. QIII
E. None of These
26. A balloon rises at a rate of 4 meters per second from a point on the ground 30 meters from an observer. Find the rate of change of the angle of elevation of the balloon from the observer when the balloon is 30 meters above the ground.

A. $\frac{1}{30}$ rad/sec B. $\frac{1}{60}$ rad/sec C. $\frac{4}{15}$ rad/sec D. $\frac{1}{15}$ rad/sec E. $\frac{2}{15}$ rad/sec 27. Given $a_n = 3a_{n-1} - 2a_{n-2}$ where $a_1 = 1$ and $a_0 = -1$ find a_4 . B. -29 A. -82 C. 82 D. 29 E. 773 28. Jill can tile a room alone in 12 hours, and her friend Kylie can tile a room alone in 9 hours. How long will it take the two of them to tile a room twice as long and twice as wide if they work together? (nearest minute) A. 10 hr. 17 min. B. 21 hr. C. 9 hr. 6 min. D. 19 hr. 10 min E. 20 hr. 34 min. 29. If $5^x \cdot 25^{2y} = 1$ and $3^{5x} \cdot 9^y = \frac{1}{9}$, then $x + y = \frac{1}{9}$ A. $\frac{1}{2}$ B. $-\frac{1}{3}$ C. $-\frac{4}{9}$ D. $-\frac{5}{9}$ E. 30. If $\int_{3}^{8} f(x) dx = 42$, then $\int_{3}^{8} \left[2 + 5f(x) \right] dx =$ A. 220 B. 212 C. 139 D. 218 E. 232 31. The equation $5x^2 - 12x + k = 0$ has two positive solutions when which of the following is true? A. -7.2 < *k* < 7.2 B. *k* > 7.2 C. *k* < 7.2 D. -7.2 < k < 7.8E. 0 < k < 7.232. There are 323 students in the senior class in Texas HS senior class. The ratio of boys to girls is 11:6. If the number of boys remains constant, how many new girls would have to enroll to change the ratio to 1:1? A. 132 B. 102 C. 95 D. 143 E. 85 33. Find C if the remainder of $2x^3 - 7x^2 + 3x + C$ divided by x - 5 is 16. B. 456 C. -74 A. 106 D. -424 E. 428 34. The chord AB has a length of 40 cm and the circle has a diameter of 50 cm. How far is AB from the center of the circle? A. 48 cm B. 30 cm C. 1000 35. Use the function on the right. Find f(2) + f(-4) + f(5). A. 19.5 B. 1.5 C. 7.5 D. 9.5 E. 5.5 $f(x) = \begin{cases} x-5, & x < 0 \\ (2x)^2, & 0 \le x \le 4 \\ \frac{x}{2}, & x > 4 \end{cases}$ A. $\frac{14x^2 - 11x}{3 - 7x}$ B. $\frac{x^2 - 2x}{x - 5}$ C. $\frac{-14x^2 + 11x}{7x - 1}$ D. $\frac{14x^2 - 11x}{7x - 3}$ E. $\frac{2x^2 - 11x}{x - 3}$

37. A circle is inscribed in a triangle. The center of the circle is the intersection of the _____ of the triangle.

A. Perpendicular Bisectors B. Altitudes C. Medians D. Angle Bisectors E. Sides

38. If y varies directly with x and y = 340 when x = 200, calculate y when x = 117. C. 300.9 A. 68.9 B. 581.1 D. 198.9 E. 147.3 39. John's Ice Cream carries 12 gournet flavors of home-made ice cream every day. If they also carry four choices of cones, how many different 2-scoop cone choices are there every day? 312 A. 264 B. 45 C. D. 180 E. 78 40. *P* and *Q* are the roots of $f(x) = 4x^2 + 4x - 15$. Calculate $P^4 - 4P^3Q + 6P^2Q^2 - 4PQ^3 + Q^4$. B. 256 C. 243 D. 81 A. 625 E. -64 41. The graph of the parametric equations $x = 5\cos t$ and $y = 3\sin t$ is a(n) _____. A. Circle B. Ellipse C. Hyperbola D. Parabola E. Line 42. $4\log a^3b - 2\log \frac{a}{b^2} + \frac{1}{2}\log ab =$ B. $\frac{1}{2}\log a^{11}b^9$ C. $\frac{1}{2}\log a^5b$ D. $\frac{1}{2}\log a^{21}b^{17}$ E. $\log(a^{10}\sqrt{ab})$ A. $\log a^9 b$ 43. Calculate $4 - \frac{3^2}{2!} - \frac{3^3}{3!} + \frac{3^4}{4!} + \frac{3^5}{5!} - \frac{3^6}{6!} - \frac{3^7}{7!} + \dots$ to the nearest ten-thousandth. B. -0.8295 C. -1.0464 D. 1.0510 A. -0.8489 E. -0.1424 44. Let a, b and c be real numbers such that c = a + b + 12, $c^2 = a^2 + b^2$ and ab = 12. Find the value of 12c. C. 60 D. 7 E. 84 A. 5 B. 24 45. Regular hexagon ABCDEF is inscribed in a circle and all the diagonals are drawn. What is $m \angle AEC$? B. 45° C. 60° D. 90° A. 120° E. 72° 46. Which of the following is an equation of the tangent line to $f(x) = \sin^2(2x)$ when $x = \frac{\pi}{6}$? A. $y - \frac{1}{4} = \frac{\sqrt{3}}{2} \left(x - \frac{\pi}{6} \right)$ C. $y - \frac{\sqrt{3}}{2} = \frac{1}{4} \left(x - \frac{\pi}{6} \right)$ E. $y - \frac{1}{4} = \sqrt{3} \left(x - \frac{\pi}{6} \right)$ B. $y - \frac{3}{4} = \sqrt{3} \left(x - \frac{\pi}{6} \right)$ D. $y - \frac{3}{4} = \frac{1}{4} \left(x - \frac{\pi}{6} \right)$ 47. Chance is going to flip a fair coin 6 times. What is the probability that he will get exactly 4 tails in a row? C. $\frac{7}{64}$ B. $\frac{3}{64}$ D. $\frac{1}{8}$ E. $\frac{3}{64}$ A. $\frac{1}{16}$ 48. Find the angle between the vectors $v_1 = \langle -8, 3 \rangle$ and $v_2 = \langle 11, 9 \rangle$. (nearest degree) C. 150° A. 30° B. 23° D. 67° E. 120° 49. $\csc\theta < 0$ and $\tan\theta < 0$. Where will θ terminate? B. QII C. QIII D. QIV A. QI E. x - axis 50. Given triangle ABC such that $m \angle A = 60^{\circ}$, AC = 26 cm and BC = 25 cm there are two possible lengths for the side AB. Find the sum of these two lengths. A. 25 B. 26 C. 51 D. 17 E. 34 51. Solve $e^{2x} - 10e^x + 21 = 0$. B. $\log 3, \log 7$ A. 0, log 21 C. $\ln 3$, $\ln 7$ D. 0, ln 21 E. 3, 7

								10	(
52.	Finc	d the value of A +	- <i>B</i> + C	C, where A, B an	d <i>C</i> :	are positive intege	ers su	ich that: $\frac{13}{10} = A - \frac{13}{10} = A - $	$+\left\lfloor \frac{-}{B}\right\rfloor$	$\frac{1}{\frac{1}{C+1}}$
	A.	12	B.	7	C.	15	D.	6	E.	9
53.	Let	$f_0 = 0, f_1 = 1, f_1$	$f_2 = 1$,	$f_3 = 2, f_4 = 3, .$	be	the terms of the F	Fibon	acci sequence. F	ind ($(f_9)^2 - (f_8)^2.$
	A.	1868	В.	715	C.	272	D.	610	E.	55
54.	If f	$f(x) = ax^5 + bx^3 + $	cx+7	f(9) = 48	, the	n $f(-9) =$				
	A.	41	В.	48	C.	-34	D.	-48	E.	55
55.	Qua AB	drilateral ABCD CD?	has v	ertices (-7,3), (-4,6	5), (5,5) and (9,-	-2) re	espectively. What	ıt is t	he area of
	A.	77	В.	45	C.	67	D.	71	E.	61
56.	Giv of 1	en the set of integ 6. Find the value	gers in e of <i>d</i> .	ascending order	$\{a, b\}$	b, c, d, e has a me	dian	of 14 a mean 16.4	4, mo	ode 11 and range
	A.	27	В.	21	C.	17	D.	14	E.	19
57.	The shac	radius of circle ded region. (near	C is 9 f rest in ²	in, <i>B</i> is the midp $\binom{2}{2}$	oint	of \overline{AC} and D is the formula of \overline{AC} and \overline{D} is the formula of \overline{AC} and AC	he mi	dpoint of \overline{CE} . Fi	ind th	ne area of the
	A.	18 in ² B.	35 in ²	² C. 20 in	2	D. 40 in^2	E.	27 in ²		B C D E
58.	Giv	en $f(x) = 2x^2$, g	g(x) =	$=\frac{1}{x}$ and $h(x) = \sqrt{x}$	\sqrt{x} e	valuate $h^{-1}(g(f))$	(2)))			
	A.	8	B.	$\frac{1}{64}$	C.	$2\sqrt{2}$	D.	64	E.	$\frac{1}{2\sqrt{2}}$
59.	133	$1_b = \{10}$ where	b > 3	3.						
	A.	$b^2 + 3b + 3 + \frac{1}{b}$	B.	$(b^2+1)(b+1)$	C.	b(b+1)(b+2)	D.	$(b+1)^3$	E.	$(b^2+1)(b-1)$
60.	$\sum_{k=0}^{15} k$	$k(k^2+1) =$								
	A.	11130	B.	14520	C.	74400	D.	1300	E.	3390

1. B	21. C	41. B
2. B	22. A	42. D
3. E	23. E	43. A
4. E	24. A	44. C
5. A	25. E	45. C
6. A	26. D	46. B
7. D	27. D	47. E
8. E	28. E	48. E
9. D	29. B	49. D
10. B	30. A	50. B
11. A	31. E	51. C
12. E	32. C	52. D
13. A	33. C	53. B
14. B	34. E	54. C
15. A	35. D	55. E
16. B	36. A	56. E
17. E	37. D	57. B
18. B	38. D	58. B
19. C	39. C	59. D
20. D	40. B	60. B

2015-2016 TMSCA Mathematics Test Four Selected Solutions

$$\frac{4}{5} + \frac{4}{20} = \frac{33}{60}, d \approx 2.3 \text{ mi}$$
19. If there are 12 types and 2 scopy, the number of distinct ice cream orders with an initial term 57 and a ratio of $-\frac{1}{3}$.
The sum will be $\frac{57}{1-(-\frac{1}{3})} = 57 + \frac{4}{3} = \frac{171}{4}$
21. The average rate of change for the function on the slope of the scope of the s

TMSCA HIGH SCHOOL MATHEMATICS TEST#5 © NOVEMBER 21, 2015

GENERAL DIRECTIONS

1. About this test:

- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA 2015-2016 TMSCA Mathematics Test Five

- 1. Evaluate: $6!+24(3-10)\div40\times15$.A. 719B. 656C. 657D. 720E. 678
- 2. Caroline had a rope that was 30 feet long. She cut off three pieces such that the ratio of lengths of the pieces were 2:5:10 with 20 inches of string left over. How long was the longest piece?
 A. 3 ft. 8 in.
 B. 16 ft. 8 in.
 C. 23 ft.
 D. 17 ft. 8 in.
 E. 21 ft. 4 in.
- 3. The distances between the hash marks () are equal. Find P+Q+R+S.

- A. 43.7 B. 177 C. 30.7 D. 496 E. 14.7
- 5. Evaluate: $\frac{(x+1)!}{(x-2)!} \div \frac{x!}{(x-1)!}$. A. $x^5 + 2x^4 - x^3 - 2x^2$ B. $x^3 + 2x^2 - x - 2$ C. $x^4 - 5x^2 + 4$ D. $x^6 + 4x^2$
- 6. Which of the following is the standard form of the equation of the perpendicular of \overline{PQ} that passes through the point *P*?
 - A. 5x+7y=3B. 5x-7y=55C. 7x-5y=-10D. 5x-7y=-18E. 7x+5y=15

8. Find the area of the triangle ABC shown.

A.
$$18 \text{ cm}^2$$
 B. $\frac{27\sqrt{3}}{2} \text{ cm}^2$ C. 12 cm^2 D. $24\sqrt{3} \text{ cm}^2$ E. $\frac{15}{2}$

- 9. Use the Venn diagram to determine the set $A' \cap B$.
 - A. $\{2,4,9\}$ C. $\{2,4,5,9,17\}$ E. $\{\$,?,\theta,2,4,9,\}$
 - B. $\{\theta\}$ D. $\{\theta, 2, 4, 5, 9, 17\}$
- 10. Karolyn invested \$1000 for 4 years in a variable interest account. Her annual interest rates are shown in the table below. What was the average interest for the 4 years? (nearest hundredth of a percent)

		Year	1	2	3	4	
		Interest	4% gain	2.4% loss	3% loss	2.7% gain	
A.	0.33%	В.	0.30%	C. 2.97%	D. 0.28%	E. 3	.02%

17

\$

11. The student council consists of 8 girls and 5 boys. How many different 4-person delegations can the sponsor choose for the state convention if any delegation must have at least two girls? 280 B. 630 C. 560 E. 72 A. D. 95 12. The volume of the triangular prism shown is _____cm³. D. $348\sqrt{3}$ 8 cm 8 cm A. $352\sqrt{3}$ C. 528 E. $328\sqrt{3}$ B. 704 11√3 cm 8 cm 13. If x - y = 8, and xy = -15, then $x^3 - y^3 =$ B. -320 A. -360 C. 392 D. 192 E. 152 14. The function f(x) = _____ will produce this graph. 4 C. $3\sin(\pi(x-1))$ A. $3\sin(\pi x+1)$ E. $\sin(\pi(x-1))+3$ D. $3\sin(x+\pi)$ B. $3\sin(\pi x - 1)$ -2 15. $A = \begin{bmatrix} 3 & 5 \\ 1 & -2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 \\ 0 & 4 \end{bmatrix}$. Calculate det(2A + B)_4 -4 -2 0 2 4 D. A. -18 B. -44 C. -11 -8 -13 E. 16. What are the odds that a factor of 168 is a multiple of 4? A. 1 to 2 B. 1 to 3 D. 2 to 3 5 to 12 C. 1 to 1 E. 17. $(3+2i)^5 =$ C. -243 - 32i D. -597 + 122iA. -597-122*i* B. 243-32*i* E. -275 + 211i18. If f is continuous on the closed interval [a,b] and k is any number between f(a) and f(b), then there is at least one number c in [a,b] such that f(c) = k. This is the _____. A. Sandwich Theorem C. Rolle's Theorem E. Fundamental Theorem of Calculus B. Intermediate Value Theorem D. Fundamental Theorem of Algebra 19. *P* and *Q* are the roots of $f(x) = 2x^2 + x - 15$. Calculate $P^4 - 4P^3Q + 6P^2Q^2 - 4PQ^3 + Q^4$. B. $\frac{28561}{625}$ C. $\frac{83521}{625}$ D. $\frac{5661}{16}$ A. $\frac{1}{16}$ E. 20. How many 3-digit numbers exist such that the sum of their digits equals 4? B. 9 C. 7 A. 8 D. 10 E. 11 21. What is the digit in the millionths place for the sum of the sequence $1+3-\frac{3^2}{2!}-\frac{3^3}{3!}+\frac{3^4}{4!}+\frac{3^5}{5!}-\frac{3^6}{6!}-\frac{3^7}{7!}+...?$ A. 2 B. 5 C. 7 D. 8 E. 3 22. How many distinct arrangements can be formed using all of the letters in the word "HOMECOMING"? A. 40320 B. 907200 C. 151200 D. 20160 E. 3628800 23. A triangle with side lengths 12 cm, 12cm and 20 cm is a(n)______triangle. A. scalene acute B. isosceles obtuse C. isosceles acute D. scalene obtuse E. scalene right

37. Express the complex number $2\left(\cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6}\right)$ in rectangular form.

A.
$$-\frac{\sqrt{3}}{2} + \frac{i}{2}$$
 B. $-\sqrt{3} - i$ C. $-\sqrt{2} + i\sqrt{2}$ D. $-\sqrt{3} + i$ E. $-\sqrt{2} - i\sqrt{2}$

38. On triangle ABC shown, $m \angle BAC = \frac{\pi}{6}$ radians, AB = 12 in. and AC = 9 in. Find the area of triangle ABC.

- A. $27\sqrt{3}$ in² B. 36 in² C. 54 in² D. $36\sqrt{3}$ in² E. 27 in² 39. If $f(x) = ax^5 + bx^3 + cx + 8$ and f(7) = 48, then f(-7) =A. -32 B. 41 C. 40 D. -31 E. 56
- 40. The number of calories in a particular candy varies directly with the mass. If a 10 g serving has 25 calories, how many calories will be in a 0.5 kg bag?
 A. 1050 B. 200 C. 1250 D. 250 E. 1500
- 41. Chauncy created a pair of special dice which have only three numbers on each die. The side opposite each number is the same as the number. When the dice shown are rolled and the top numbers are added, what is the expected value of the sum?

A. 14.5 B. 15 C.
$$15.\overline{3}$$
 D. $15.\overline{6}$ E. $16.\overline{3}$

(row 0)

(row 1)

42.
$$(2x+7)(5x-1) = 2x(5x-1) + 7(5x-1)$$
 is an example of _____ property.

A. TransitiveB. AssociativeC. CommutativeD. DistributiveE. Substitution43. Calculate the total surface area of the triangular prism shown.24 cm

A. 1200 cm^2 B. 644 cm^2 C. 924 cm^2 D. 600 cm^2 E. 840 cm^2 $44. \frac{\text{cot}^2 t}{10 \text{ cm}} = 10 \text{ cm}^2$

A.
$$\sec t + \cos t$$
 B. $\sec t - \cos t$ C. $\csc t + \sin t$ D. $\sec t - \sin t$ E. $\csc t - \sin t$
45. $f''(x) - 2$ $f'(2) - 5$ and $f(2) - 10$ Evaluate $f(7)$

45. f''(x) = 2, f'(2) = 5 and f'(2) = 10. Evaluate f'(7). A. 52 B. 62 C. 54 D. 60 E. 56

46. Given the triangular pattern shown below, find the third number in row 15.

 A. 105
 C. 136
 E. 162
 1
 2
 1
 (row 2)

 B. 171
 D. 120
 ...
 ...
 (...)

47. The ratio of length to width of a rectangle is 7:3 and the area is 75.81 in². What is the perimeter of the rectangle?
A 38 in B 55 in C 19 in D 40 in E 302 in

48. If
$$\frac{2x-7}{3x-2} - \frac{3x+2}{2x-7} = \frac{Ax^2 + Bx + C}{Px^2 + Qx + R}$$
, then $\frac{A+B+C}{P+Q+R} =$
A. $-2\frac{2}{5}$ B. $1\frac{1}{3}$ C. $\frac{2}{5}$ D. -4 E. $-4\frac{4}{5}$

49. Adam is four years younger than Bill. Three years ago, Charles was twice as old as Adam. Charles is five years older than Bill. What is the sum of their current ages? A. 40 B. 49 D. 43 E. 51 C. 38

50. Calculate the slope of the normal line to $2x^3 + 3x^2y - y^2 = -2$ at the point (-1,3). D. $\frac{1}{3}$ B. -3 A. -4

C. $\frac{1}{4}$ 51. The Bears and the Lions are going to play a 3-game tournament. Based on their records, the probability that the Bears will win a particular game is 0.5, while the probability that the Lions will win a particular game is 0.3. What is the probability that the tournament will end in a tie?

- B. 0.008 C. 0.188 D. 0.180 E. 0.900 A. 0.908
- 52. The afternoon train from Seattle, WA to Salem, OR is scheduled to take 5 hours and 12 minutes travelling at an average speed of 43 mph. Due to tracks warping in hot weather, the train must slow to an average of 25 mph for 3 hours of the scheduled trip on a summer day. How late will the arrival be in Salem? (nearest minute)

A. 1 h 46 min C. 2 h 12 min B. 1 h 15 min D. 2 h 23 min E. 2 h 32 min

53.
$$\int_{-3}^{7} f(x) dx = 9$$
. Calculate $\int_{-3}^{7} (6+5f(x) dx)$.
A. 105 B. 51 C. 87 D. 110 E. 150

54. Let $f(x) = \frac{2x^2 - 4x + 5}{x - 3}$, and s(x) be the slant asymptote of f. Find the value of s(5). C. 12 D. 8 A. 10 B. 0 E. 15

55. Find the area of the triangle with vertices (1,2), (6,12) and (4,-1).

A. 36.5 B. 46.5 C. 15.5 D. 42.5 E. 22.5

56. Meredith set out to row on a lake. She rowed 750 m on a bearing of 75°, then 280 m on a bearing of 338°, then 800 m on a bearing of 210°. How far is she from her original starting point? (nearest meter) A. 196 m B. 325 m C. 185 m D. 61 m E. 239 m

57. Given that $AB \cong AC$, find the area of triangle ABD.

- 58. Abigail, Bonny and Carla can plant a flower bed for Ms. Daisy in 3, 4 and 8 hours respectively. How long would it take them to plant Ms. Daisy's flower bed working together? (nearest hundredth)
 - C. 1.53 hr. A. 1.41 hr. B. 1.67 hr. D. 1.61 hr. E. 2.13 hr.

59. What is the constant term in the binomial expansion of $\left(3x^5 - \frac{1}{x}\right)^{12}$?

A. 66 B. 792 C. 28 E. 594 D. 8052 60. If $\frac{6x+51}{x^2+3x-10} = \frac{A}{x-2} + \frac{B}{x+5}$, then AB =B. -27 C. 12 E. -36 A. 18 D. 15

E. 3

2015-2016 TMSCA Mathematics Test Five Answers

1. C	21. A	41. B
2. B	22. B	42. D
3. A	23. B	43. E
4. E	24. D	44. E
5. E	25. A	45. D
6. B	26. D	46. A
7. D	27. C	47. A
8. B	28. B	48. D
9. A	29. D	49. B
10. D	30. E	50. C
11. B	31. D	51. C
12. C	32. A	52. B
13. E	33. C	53. A
14. C	34. C	54. C
15. A	35. C	55. E
16. C	36. B	56. B
17. D	37. B	57. C
18. B	38. E	58. A
19. E	39. A	59. E
20. D	40. C	60. B

2015-2016 TMSCA Mathematics Test Five Select Solutions

 10. The average interest will be $\sqrt{(1.04)(0.976)(0.97)(1.027)} \approx 1.0028 \text{ or a}$	46. The triangular pattern shown is Pascal's triangle, and the third number on
$\sqrt{(1.04)(0.970)(0.97)(1.027)} \sim 1.0020 \text{ of } u$	any row beginning with row 2 is always
0.28% gain.	the $(n-1)^{th}$ triangular number. For row
11. The number of delegations with at least 2 girls is $\binom{8C_2}{5C_2} + \binom{8C_3}{5C_1} + \binom{8C_4}{5C_0}$ which equals 630	$15, \frac{14(15)}{2} = 105.$
which equals 0.50 .	50. $6x^2 + 3\left(x^2\frac{dy}{dx} + y \cdot 2x\right) - 2y\frac{dy}{dx} = 0$
13. $x^{3} - y^{3} = (x - y)((x - y)^{2} + 3xy) =$	at $(-1,3)$, $6+3\left(\frac{dy}{dx}-6\right)-6\frac{dy}{dx}=0$.
8(64+3(-15))=152.	Solve for $\frac{dy}{dx} = -4$, so the slope of the
20. Listed in order of their first digit:	1 line will be 1
103, 130, 121, 112, 202, 220, 211	normal line will be $-\frac{1}{4}$.
301, 310	51. The tournament could end in a tie if
400	the results are TTT or all 6 arrangements
21. This is the power series for the function	of TLB, so the probability will be
$f(x) = \sin x + \cos x$ when $x = 3$	$0.2^3 + 6(0.2)(0.3)(0.5) = 0.188$.
$\sin 3 + \cos 3 \approx -0.8488724885$. The digit in	10
the millionths place is a 2.	59. $_{12}C_2(3x^5)^2(-\frac{1}{x})^{10} = 594$
22. There are 10 total letters. "O" and "M" are each appear twice, so the total number of distinct arrangements is $\frac{10!}{(21)(21)} = 907200.$	
(2!)(2!)	
31. $\binom{18}{18}C_2\binom{16}{16}C_6\binom{10}{10}=1225224$.	
35.	
(25R+5P+Q)+(16Q+4R+P)-(9P+3Q+R)	
equals $-3P + 14Q + 28R$.	
39. $f(7) = 40 + 8 = 48$,	
$f(-7) = -40 + 8 = -32 \; .$	
[13 14 15]	
41. 14 15 16 This array shows the	
15 16 17	χ.
possible sums with just the faces that are	
showing. These sums would just be	
repeated 4 times in a 6x6 array if we wrote	
the same, 15.	
	1

TMSCA HIGH SCHOOL MATHEMATICS TEST#6 © DECEMBER 5, 2015

GENERAL DIRECTIONS

1. About this test:

- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA TMSCA

- 1. Evaluate: $1 2 \times 5 + 20 \div (1 5) \times 1 6$
 - (A) 0.25 (B) 0 (C) -9.75 (D) -16 (E) -20
- 2. Les Cash had \$75 to spend. He spent 40% on clothes. Then he spent 60% of what he had left on shoes. He paid \$9.50 for lunch. How much did he have left to spend at the arcade?
 - (A) \$17.50 (B) \$15.70 (C) \$14.25 (D) \$9.50 (E) \$8.50
- 3. If $F = \{f, r, u, g, a, l\}$, $L = \{l, u, c, k, y\}$, and $P = \{p, o, l, i, t, e\}$, then $(F \cup L) \cap (L \cup P)$ contains how many distinct elements?
 - (A) 6 (B) 5 (C) 4 (D) 2 (E) 1
- 4. (12+5) + 15 = (5+12) + 15 and $12 \times (5 \times 16) = 12 \times (16 \times 5)$ are examples of the _____ properties of equality.
 - (A) associative (B) commutative (C) distributive (D) addition (E) subtraction
- 5. The order pairs (-3, 5), (3, -7), (7, -15), (9, -19) represent which of the following:
 - (A) a relation only (B) a function only (C) both a relation and a function

(E) a function that is not 1-1 function

- **(D)** neither a relation nor a function
- 6. Simplify: $\left(\frac{x^2 + 2x 3}{x^2 4}\right) \left(\frac{3x 6}{x^2 3x + 2}\right)$ (A) $\frac{3x + 9}{x^2 - 4}$ (B) x + 3 (C) $\frac{x + 3}{3x^2 - 12}$ (D) $3x^2 - 12$ (E) $\frac{3x + 9}{x + 2}$
- 7. Find the greatest common divisor of $3^2 \times 5^3$, $2^3 \times 3 \times 5^2$, and $2^5 \times 5$.
 - (A) 5 (B) 30 (C) 15 (D) 6 (E) 120
- 8. Line 4x ky = 5 is perpendicular to line 2x 3y = 6. What is the value of k?
 - (A) $-\frac{2}{3}$ (B) $-1\frac{1}{2}$ (C) $-1\frac{2}{3}$ (D) $-2\frac{2}{3}$ (E) $-3\frac{1}{3}$
- 9. The diameter and length of the joint of PVC pipe is shown. Find the lateral surface area of the joint of pipe. (nearest in²)

(A) 377 in^2 (B) 480 in^2 (C) 503 in^2 (D) 628 in^2 (E) 754 in^2

2015-16 TMSCA High School Math Test 6 - page 1

- 10. Perry Meeter has 200 feet of fencing. He wants to fence in his rectangular garden. What will the area of the garden be if the width is 45 feet and he uses all of the fencing?
 - (A) $3,025 \text{ ft}^2$ (B) $2,025 \text{ ft}^2$ (C) $3,262.5 \text{ ft}^2$ (D) $2,475 \text{ ft}^2$ (E) $3,487.5 \text{ ft}^2$
- 11. Let T_n be the nth triangular number, S_n be the nth square number, and P_n be the nth pentagonal number. Then $P_2 + S_2$ has the same value as:
 - (A) S_3 (B) T_2 (C) P_3 (D) T_4 (E) T_3
- 12. Find the area of \triangle PQR. (nearest tenth).

- (A) 64.1 cm^2 (B) 75.0 cm^2 (C) 78.9 cm^2 (D) 95.7 cm^2 (E) 99.6 cm^2
- 13. The sum of the interior angles of a simple convex hexagon is:
 - (A) 720° (B) 800° (C) 1080° (D) $1,440^{\circ}$ (E) $2,160^{\circ}$
- 14. Find the odds of randomly selecting a vowel from a box containing the letters from the name POCAHONTAS?
 - (A) 2:3 (B) 1:2 (C) 2:5 (D) 1:5 (E) 1:3
- 15. Let 3x + 2y = 1 and x y = -2. Find x + y.
 - (A) 2 (B) 1.2 (C) -0.6 (D) -1 (E) 0.8
- 16. If $\frac{5}{(x+2)(x-2)} \frac{2}{(x-3)(x-2)} = \frac{k}{(x+2)(x-2)(x-3)}$, then k equals: (A) 3x + 16 (B) 7x - 11 (C) 2x + 4 (D) 3x - 19 (E) 5x - 15
- 17. The formulas that relate the coefficients of a polynomial to the sums and products of its roots is named after which of the following mathematicians?
 - (A) Sophie Germain(B) Marin Mersenne(C) Zeno of Alea
 - (D) Franciscus Vieta (E) Freda Porter

18. If $a_1 = 1$ and $a_n = 2(a_{n-1}) - 3$, then a_5 equals:

(A) -55 (B) -29 (C) -26 (D) -21 (E) -15

2015-16 TMSCA High School Math Test 6 - page 2

19. Given the sequence 0, 3, 8, 15, 24, k, 48, 63, ... find k.

- (A) 26 (B) 32 (C) 35 (D) 40 (E) 43
- 20. Mr. White's height is 6' 1". How long is Mr. White's shadow when the angle of elevation of the sun is 40 ° 15'? (nearest inch)
 - (A) 6' 0'' (B) 7' 2'' (C) 7' 6'' (D) 8' 6'' (E) 9' 0''

21. Determine the range of $f(x) = 2 - 3\cos(5x + 7)$.

- (A) [-1,1] (B) [-3,2] (C) [-3,3] (D) [-7,5] (E) [-1,5]
- 22. The equation y = _____ will produce this graph.

(C) $3\cos(2x + \pi) + 4$

(D) $3\sin(4x + \pi) - 2$ (E) $3\sin(4x - \pi) + 2$

23. In the expansion of $(2x - 3y)^4$, the sum of the coefficients of the 2nd and the 3rd term is:

(B) $3\cos(2x-2\pi)+2$

(A) 120 (B) 48 (C) 312 (D) 625 (E) 60

24. Use the Fibonacci characteristic sequence ..., p, -2, 3, q, r, ... to Find p + q + r.

(A) 11 (B) 10 (C) 8 (D) 5 (E) 1

25. $f(x) = 2x^3 + 3x^2 + kx + 5$ is divided by x - 1 the remainder is 8. Find the value of k.

(A) 10 (B) 4 (C) 0 (D)
$$-1$$
 (E) -2

26. Let $f(x) = (2x + 1)^3$ Find f'(-4).

(A) $2\sin(4x - \pi) + 3$

- (A) 486 (B) 384 (C) 343 (D) 294 (E) 147
- 27. What is the probability that a factor of 216 is a multiple of 3?
 - (A) $33\frac{1}{3}\%$ (B) 50% (C) $66\frac{2}{3}\%$ (D) 70% (E) 75%

(A) looped limacon (B) cardioid (C) eight rose (D) double circle (E) lemniscate

- **29.** $[(1+2+3+4+...+13+14) \times 15] \div [(16+17+18+19+...+28+29) \times 30] = ?$
 - (A) $\frac{1}{225}$ (B) $\frac{1}{900}$ (C) $\frac{1}{45}$ (D) $\frac{1}{6}$ (E) $\frac{1}{2}$
- 30. Coach Learner has 26 students in his math class class. Fourteen students play sports. Five are in the band. Ten compete in UIL academics. One is in band and UIL academics. Three are in sports and band. Four are in sports and academics. If no one does all three, how many students don't do any of the three things?
 - (A) 1 (B) 2 (C) 3 (D) 5 (E) 7

31. Let p and q be the roots of $x^2 - 5x + 6 = 0$. Find $p^4 + 4p^3q + 6p^2q^2 + 4pq^3 + q^4$.

- (A) 1 (B) 16 (C) 81 (D) 256 (E) 625
- 32. AB intersects CD at point E such that $m \angle AEC = m \angle BED$. $\angle AEC$ and $\angle BED$ are considered to be ______ angles.
 - (A) complementary (B) vertical (C) alternate interior (D) supplementary (E) right
- 33. Find the sum of the coefficients of the quotient: $(x^4 2x^3 3x + 6) \div (x 2)$
 - (A) -2 (B) -1 (C) 0 (D) 1 (E) 2

34. Simplify: $(\sec^2\theta - 1)(1 - \sin^2\theta)$.

(A)
$$-\sec^2\theta$$
 (B) $-\csc^2\theta$ (C) 1 (D) $\sin^2\theta$ (E) $\cos^2\theta$

35. Which of the following statements about $f(x) = \frac{1}{2}x^3 - 2$ is/are true?

- I. $f(\mathbf{x})$ is a function.
- **II.** $f(\mathbf{x})$ is a one to one function on its domain.
- III. f(x) has an inverse function on its domain.
- (A) I & II (B) I only (C) I & III (D) all of them (E) none of them

36. How many positive 3-digit numbers exist such that the sum of their digits equals 9?

- (A) 27 (B) 54 (C) 36 (D) 63 (E) 45
- 37. Let $f(x) = (x+3)^2 7$ and $g(x) = \sqrt{x+7} 3$. Find $(f \circ g) (x+1)$.
 - (A) x (B) x-3 (C) x+1 (D) x+4 (E) x-1
- **38.** Betty Wensom spins the wheel. The wheel consists of eight congruent sectors as shown. What is the mathematical expectation on any one spin?

- (A) 2.5 (B) 5 (C) 8.5 (D) 20 (E) 400
- 39. If the pattern of the sequence 1, 5, 11, 19, 29, 41, ... continues, find the 18th term.
 - (A) 343 (B) 341 (C) 324 (D) 307 (E) 305
- 40. *U Rent All* rents trucks for \$8.00 an hour plus 30¢ a mile. *I Rent Some* rents the same type of truck for \$7.00 an hour plus 40¢ a mile. A truck needs to be rented for 5 hours that will travel 100 miles. How much would be saved by renting from *U Rent All* instead of *I Rent Some*?
 - (A) \$1.00 (B) \$4.00 (C) \$5.00 (D) \$7.00 (E) \$9.00
- 41. Let $f_0 = 0$, $f_1 = 1$, $f_2 = 1$, $f_3 = 2$, $f_4 = 3$, ... be the terms of the Fibonacci sequence. If $f_{15} = 610$, Find f_{16} .
 - (A) 976 (B) 981 (C) 987 (D) 993 (E) 998
- 42. Tu Oad is 3 years older than Soh Yung. The sum of three times Tu's age and twice Soh's age is equal to Tan Gram's age. If Tan is 44 years old, what is the sum of Soh's age and Tu's age?
 - (A) 10 (B) 13 (C) 17 (D) 19 (E) 22
- 43. If CD = 8 cm and CB = 5 cm then AC = ?

(A) $12\frac{4}{5}$ cm (B) $11\frac{1}{8}$ cm (C) 13 cm (D) $14\frac{3}{5}$ cm (E) $8\frac{1}{8}$ cm

2015-16 TMSCA High School Math Test 6 - page 5

- 44. Saul T. Water bought some neon tetras and some fantail guppies for his aquarium. Tetras cost \$2.10 each and guppies cost \$1.80 each. He paid \$28.50 for 14 fish, not including tax. How many tetras did he buy?
 - (A) 13 (B) 11 (C) 10 (D) 7 (E) 3
- 45. There are 3 judges, 5 policemen, and 9 office workers in the Painted Rock Courthouse. A county planning committee containing 1 judge, 3 policemen, and 4 office workers is to be created. How many different committees can be created?
 - (A) 68,040 (B) 24,310 (C) 3,780 (D) 473 (E) 136
- 46. Find the area of the shaded region in square units.

51. (2, 3) and (3, 1) are opposite vertices of a parallelogram. If (0, 0) is the third vertex, then the fourth vertex is:

(A)
$$(1, -1)$$
 (B) $(-1, 2)$ (C) $(5, 4)$ (D) $(2.5, 2)$ (E) $(6, 3)$

52. Solve: $\log_2(8x) - \log_2(x^2 - 1) = \log_2(3)$

(A) 3 (B) 8 (C) 2 (D) $\frac{1}{3}$ (E) $\frac{1}{8}$

53. $\triangle XYZ$ exists such that XZ = 20 cm, XY = 12 cm and $m \angle XYZ = 45^{\circ}$. Find YZ. (nearest tenth)

(A) 16.7 cm (B) 18.4 cm (C) 23.6 cm (D) 25.5 cm (E) 26.6 cm

54. If $[(2+3i)(4-5i)] \div (i) = a + bi$, then a + b = ?

(A) -25 (B) -21 (C) -1 (D) 5 (E) 9

55. If $f'(x) = 12x^2 - 6x + 2$ and f(1) = 2, find f(0).

- (A) -1 (B) 0 (C) 1 (D) 2 (E) 8
- 56. Rose Thorn creates flower baskets consisting of five flowers in each basket. How many different baskets can Rose make if she has roses, irises, carnations, lilies, geraniums, and snapdragons?
 - (A) 2,772 (B) 720 (C) 462 (D) 252 (E) 30
- 57. A number M is randomly chosen from the set {3, 6, 8, 11, 13}. A number N is randomly chosen from the set {15, 16, 19, 23}. What is the probability that the product of M and N is an odd number?
 - (A) 30% (B) 40% (C) 45% (D) 50% (E) 55%
- 58. The length of the sides of $\triangle PQR$ are the roots of $f(x) = x^3 11x^2 + 38x 40$. The perimeter of $\triangle PQR$ is 11. Find the area in square units of $\triangle PQR$. (nearest tenth)
 - (A) 54.2 (B) 46.8 (C) 45.1 (D) 40.0 (E) 32.2

59. Which of the following statements about $f(x) = x^2 - x$ is/are true?I. f(x) is defined at 1III. f(x) is continuous at 1IV. f(x) is differentiable at 1

- (A) I, II, & III (B) I & II (C) II & III (D) all of them (E) none of them
- 60. The repeating decimal 0.2111... in base 3 can be written as which of the following fractions in base 3 in simplified form?
 - (A) $\frac{12}{20}_{3}$ (B) $\frac{1}{11}_{3}$ (C) $\frac{11}{22}_{3}$ (D) $\frac{12}{100}_{3}$ (E) $\frac{3}{12}_{3}$

2015-16 TMSCA High School Math Test 6 - page 7

2015-16 TMSCA HS Math Test #6 Answer Key

1.	Ε	21.	Ε	41.	С
2.	Ε	22.	Ε	42.	С
3.	В	23.	Α	43.	A
4.	В	24.	В	44.	B
5.	С	25.	Ε	45.	С
6.	Α	26.	D	46.	B
7.	Α	27.	Ε	47.	С
8.	D	28.	Ε	48.	A
9.	Ε	29.	D	49.	С
10.	D	30.	D	50.	D
11.	Α	31.	Ε	51.	С
12.	С	32.	В	52.	A
13.	Α	33.	Α	53.	E
14.	Α	34.	D	54.	B
15.	Ε	35.	D	55.	A
16.	D	36.	Ε	56.	D
17.	D	37.	С	57.	С
18.	В	38.	В	58.	B
19.	С	39.	В	59.	D
20.	В	40.	С	60.	A

TMSCA HIGH SCHOOL MATHEMATICS TEST#7 © JANUARY 16, 2016

GENERAL DIRECTIONS

1. About this test:

- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA 2015-2016 TMSCA Mathematics Test 7

			2013 201	0 11	in or i mainemaile	010	507		
1.	Evaluate: $(.\overline{6})(6!)$	÷(.2)(7!)-10!.						
A.	7257600	B.	-3193344	C.	8467200	D.	-3628800	E.	-3411072
2.	Two million, three	hun	dred eighteen thou	sand	, three hundred on	e plu	s thirty-six thousa	nd, f	fifty is subtracted
	from six million, si	x th	ousand, six. What	is th	e sum of the digits	s in tl	ne difference when	n wri	tten out using
	digits instead of wo	ords'	2	C	26	D	20	Б	21
A.	32	В.	40	C.	26	D.	29	E.	31
3.	Bonnie plans to bu first dozen, a 20% order cost?	y tw disco	o dozen cupcakes ount on the second	that doz	usually cost \$1.25 en, and pays 8.259	each 6 sale	She receives a 1 es tax on the total.	5% (Ho	discount on the w much will her
A.	\$26.79	B.	\$24.75	C.	\$30.00	D.	\$26.85	E.	\$25.17
4.	If $-3(4-x) = (x-x)$	4)(x	$(x-8)$, where $x \neq 4$, the	2x + 8 =				
A.	12	B.	30	C.	21	D.	11	E.	33
5.	Simplify $\frac{(x+2)!}{(x-3)!}$:	$\frac{x}{(x-x)}$	<u></u>						
A.	$x^4 + 5x^2 + 4$	B.	$\frac{x}{x^2 - 3x + 2}$	C.	$x^6 - 5x^4 + 4x^2$	D.	$x^4 - 5x^2 + 4$	E.	$\frac{x^4-5x^2+4}{x^2}$
6.	Find the equation of	of the	e line perpendicula	r to t	the one shown and				
0.	through the restrict (0))					110	$\mathbf{A} = \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A}$
	through the point (-2,3	<i>b</i>).						
А	x + y = 1		C x - y = 1		E $x + y = -1$			H	
11.			C , -		1				
B.	x - y = -5		D. $x + y = -5$						╺┱┥┥┥┥╸╸╸╸
								┼┼┥	╺╉┼┼┼┼┼┼┼┼┤

7. Carla's mother drove her to an event at an average speed of 55 mph. She rode back with a friend at an average speed of 70 mph. If her total travel time was 2 hours 20 minutes, how far did she ride with her mother? (nearest mile)

- 9. The radius of a cone is 16 in. and the lateral surface area is 1106 in². Find the volume of the cone. (nearest tenth cubic foot)
- A. 3.4 ft^3 B. 2.9 ft^3 C. 2.6 ft^3 D. 2.5 ft^3 E. 2.3 ft^3 10. If $\frac{A}{(x-8)} + \frac{B}{(3x-1)} = \frac{17x+2}{3x^2-25x+8}$ then A+B=A. 3.5 B. 7 C. 6 D. 5 E. 5.5

11. The measure of an inscribed angle of a circle is 28° . What is the measure of the intercepted arc?A. 62° B. 56° C. 14° D. 59° E. 38°

12. Carl has room for 8 travel books on his bookcase, but he has 11 travel books. In how many ways can he organize books on the shelf? C. 6652800 A. 330 B. 2640 D. 1663200 E. 1980 13. High-speed train A left Paris at 8:00 am travelling at 200 mph due south. Forty-five minutes later, Train B left the same station travelling at 185 mph due east. How far apart were the trains at 12:15 pm? (nearest mile) C. 1158 mi A. 1053 mi B. 1362 mi D. 1069 mi E. 1468 mi 14. Which of the following statement(s) about function f is/are true? I. Every function f has an inverse function f^{-1} . II. The domain of f is the range of f^{-1} . III. f^{-1} is the same as $\frac{1}{f}$. A. I, II & III B. I & III C. II & III D. II only E. none of these 15. If the pattern of the sequence 2, 8, 16, 26, 38,...continues, find the 15th term. A. 268 C. 302 D. 284 B. 236 252 E. 16. Determine the range of $f(x) = -7 + 3\cos(2\pi x - 3)$. A. [-9, -5] B. [0, 10]C. [-10,-4] D. [2,9] [-9, -2]E. 17. Find m+n if $\begin{bmatrix} -2 & 3 \\ -1 & 8 \end{bmatrix} \begin{bmatrix} -3 \\ 4 \end{bmatrix} = \begin{bmatrix} m \\ n \end{bmatrix}$. B. 35 C 22 D. 26 E. 48 A. 53 18. Leslie started out at her cabin and hiked 2.5 miles on a bearing of 18°, then changed direction and hiked another 3.6 miles on a bearing of 118°. How far would Leslie have to hike to go straight back to the cabin? (nearest tenth) B. 4.0 mi C. 5.8 mi A. 4.8 mi D. 2.3 mi E. 5.0 mi 19. Find the sum of all the critical points of $f(x) = -3x^3 - 11x^2 + 9x + 8$. $\frac{11}{3}$ $\frac{8}{3}$ C. -1 D. $-\frac{22}{9}$ B. $\frac{9}{11}$ E. A. 20. Use the Fibonacci characteristic sequence ..., -2, p, 6, q, 20, r, ... to find p+q+r. C. 28 A. 24 B. 48 D. 36 E. 56 $21. \left[(1+2+3+4+...+17) \times 30 \right] \div \left[(31+32+33+34+...+46+47) \times 60 \right] = ?$ B. $\frac{90}{13}$ C. $\frac{1}{4}$ A. $\frac{3}{52}$ D. $\frac{3}{26}$ E. 26 22. Given x = 7 - y and xy = 14 find $x^2 + y^2$. B. 35 A. 21 C. 49 D. 42 E. 56 23. If f''(x) = 18x - 10, f'(1) = 7 and f(-1) = -25 find f(2). **B**. 11 C. 20 A. 2 D. 15 E. -9 24. How many non-negative proper fractions in lowest terms have a denominator of 36? B. 29 C. 12 D. 10 E. 9 A. 13

TMSCA 15-16 HSMA Test 7

25. The length and width of a rectangle have a ratio of 15:8. The hypotenuse has a length of 3.4 ft. What is the area of the rectangle?

Page 3

C $3.6 \, \text{ft}^2$ A. 2.4 ft^2 B. 4.8 ft^2 D. 5.4 ft^2 E. 5.1 ft^2 26. Points A, B, C and D lie on the circle shown. Find AB if $BP = 4^{\circ}$, $DC = 9^{\circ}$ P and CP = 6". (not drawn to scale) А Ć B. 13.5 in C. 12 in A. 18.5 in D. 15.5 in E. 21 in 27. How many distinct arrangements can be made using all of the letters in the word "THANKSGIVING"? A. 479,001,600 B. 29,937,600 C. 79,833,600 D. 39,916,800 59,875,200 E. 28. Given the functions $f(x) = 3x^2 + 1$, $g(x) = x^3$ and h(x) = 2x - 3 calculate the value of h(f(g(-1))). C. -7 A. -8 B. 64 D. -6 E. 5 29. Two fair cubic dice, each with the numbers 2, 4, 6, 8, 10 and 12 are rolled and the numbers on top are added. What is the expected value of the sum? (nearest tenth) A. 13.6 B. 13.7 C. 14.0 D. 14.4 14.7 E. 30. The sum of the coefficients of the second and fifth terms in the expansion of $(2x-3)^8$ is A. 90720 B. 93792 C. 87648 D. 51456 E. -51456 31. Given that the set of natural numbers continues in the triangular pattern shown below. Find the sum of the means of the fourth row and seventh row. 1 (row 0) 2 3 4 (row 1) A. 64 C. 68 E. 39 5 6 7 8 9 (row 2) 10 11 12 13 14 15 16 (row 3) B. 72 D. 78 (...) 32. Given triangle ABC with AB = 15 cm, BC = 13 cm and $m \angle A = 60^{\circ}$. AC has two possible values. What is the product of these values? C. 55 D. 48 A. 42 B. 56 E. 15 33. Bill and his brother paint at the same rate. Together, they can paint a wall of their house in 2.5 hours. How long would it take one of them to paint a wall twice as wide and twice as high? A. 10 hours B. 5 hours C. 40 hours D. 20 hours E. 25 hours 34. If P, Q and R represent digits then $PRQ_5 + RPQ_4 - QRP_3$ has a numeric value in base 10 of: A. 28P+18R-9Q B. 28P+24R-5Q C. 28P+18R-7Q D. 28P+24R-7Q E. 28P+18R-5Q35. How many acute triangles with integral sides exist with sides 8", 14" and x"? A. 5 B. 4 C. 8 D. 10 E. 12 36. Daily Delight Cupcakery sells 6 different flavors of cupcakes each day. How many different dozen cupcake boxes can they put together? B. 18564 D. 50388 A. 924 C. 665280 E. 6188

37. Find AB if AD = 4,580 feet. (nearest foot) D. 4707 ft A. 8568 ft B. 9190 ft C. 7131 ft E. 9415 ft 38. If $\frac{x-5}{x+15} + \frac{x+15}{x-5}$ is equal to the mixed number $A \frac{B}{(x+15)(x-5)}$, then B =Α C. 200 D. 225 E. 150 A. 40 B. 400 39. The graphs shown are a parabola and a line. Find the area of the shaded region. (nearest whole number) B. 44 C. 84 D. 99 E. 114 (-2, 21)A. 220 5, 7)40. Simplify $(3-\sqrt{-75})(2+\sqrt{-12})$ to the form a+bi. (2, -11)C. $24 + 4\sqrt{3}i$ D. $-36 - 4\sqrt{3}i$ A. $-24 + 16\sqrt{3}i$ B. $36 - 4\sqrt{3}i$ E. $-36+16\sqrt{3i}$ 41. The square root of 331 in base 7 is: C. 21₇ A. 24₇ D. 13₇ B. 12₇ E. 16_{7} 42. What is the sum of the solutions to the equation $\sin(2\theta) = \cos\theta$ if $0 \le \theta < \frac{3\pi}{2}$. B. $\frac{2\pi}{3}$ C. $\frac{1}{2}$ 3π D. 2π E. A. π 43. Harold mixed 10 ounces of salt with 64 ounces of water. If he then added an additional 16 ounces of water, what percent of the new mixture would be water? (nearest tenth of a percent) B. 11.1% C. 12.5% A. 88.9% D. 87.5% E. 90.0% 44. If $a_1 = -3$, $a_2 = -1$, and $a_n = (a_{n-1})(a_{n-2}) - a_{n-2}$ for a > 2, find the value of a_6 . A. 0 B. -36 C. 185 D. 125 E. -115 45. What is the digit in the millionths place in the sum of the series $4 + \frac{16}{2!} + \frac{64}{3!} + \frac{256}{4!} + \frac{1024}{5!} + \dots$? D. 3 E. 6 A. 5 B. 8 C. 0 46. An archer consistently hits her target 4 out of every 7 shots. If she shoots at her target 9 times, what is the probability that she will make at least 7 shots? (nearest hundredth) C. 0.02 A. 0.82 B. 0.36 D. 0.18 E. 0.22 47. Let a, b and c be real numbers such that c = a+b+9, $c^2 = a^2+b^2$ and ab = 8. Find the numerical value of 18c. A. 65 B. 81 C. -81 D. 63 E. -65 $\lim_{h \to 0} \frac{\sin \left[2\left(\frac{\pi}{3} + h\right) \right] - \sin \left[2\left(\frac{\pi}{3} - h\right) \right]}{2h} =$ 48. C. $-\sqrt{3}$ A. $\sqrt{3}$ **B**. -1 D. 1 E. does not exist

Copyright © 2015 TMSCA

Page 4

49. The horizontal and vertical distance between the dots is 5 cm. What is the area of the heptagon?

- A. 19.5 cm^2 B. 97.5 cm^2 C. 975 cm^2 D. 512.5 cm^2 E. 487.5 cm^2
- 50. The Bulldogs and the Pirates are going to play a three game series. The probability that the Bulldogs will win any single game is 0.25. The probability that the Pirates will win any single game is 0.65. What is the probability that the 3-game series will be a tie?
- A. $\frac{1}{1000}$ B. $\frac{197}{2000}$ C. $\frac{69}{4000}$ D. $\frac{13}{800}$ E. $\frac{39}{400}$
- 51. If *w* is 10% larger than *x*, *x* is 40% larger than *y*, and *y* is 50% smaller than *z*, by what percentage is *w* smaller than *z*?
- A. 70% B. 27% C. 73% D. 23% E. 35%
- 52. The odds of drawing a pink raffle ticket at random from a bucket 495 tickets are 4:7. How many pink tickets would have to be removed from the bucket to reduce the odds to 1:3?
- A. 15 B. 75 C. 65 D. 105 E. 95 53. If $\int_0^k a \cos \theta d\theta = 29$, then $\int_{-k}^k a \cos \theta d\theta = .$ A. 0 B. 58 C. 29 D. 116 E. 841

54. Given $(f \circ g)(x) = 2x + 6$ and g(x) = 2x + 1, calculate f(9).

- A. 14 B. 24 C. 23 D. 13 E. 29
- 55. The slant height of a particular cone is equal to the diameter of the base. What is the volume of the cone in terms of the radius?

A.
$$V = \pi r^3 \sqrt{3}$$
 B. $V = \frac{\pi r^3 \sqrt{2}}{3}$ C. $V = 2\pi r^2$ D. $V = \frac{\pi r^3}{3}$ E. $V = \frac{\pi r^3 \sqrt{3}}{3}$

- 56. The length of a rectangular picture is three times the width. The picture is surrounded by a frame which is 5 inches wide. If the perimeter of the outside of the frame is 96 inches, what is the length of the picture in inches?
- A. 21 in B. 24 in C. 7 in D. 8 in E. 30 in
- 57. If p and q are the zeros of the function $f(x) = 28x^2 + 3x 135$ then $pq^2 + p^2q =$
- A. $\frac{405}{784}$ B. $\frac{405}{1568}$ C. $\frac{3}{56}$ D. $\frac{69}{14}$ E. $\frac{1215}{1568}$

58. How many distinct arrangements are there of three letters chosen from the word "CALCULATOR"?

- A. 210 B. 228 C. 264 D. 120 E. 90
- 59. Classify the graph of with the equation: $9x^2 + 6xy + 2y^2 + 2x 3y + 5 = 0$
- A) Circle B) Centroid C) Parabola D) Hyperbola E) Ellipse 60. If $9^{x-y} = 243$ and $27^{x+y} = 243$ then $x^2 y^2 =$?
- A. $\frac{25}{12}$ B. $\frac{25}{6}$ C. $-\frac{25}{12}$ D. $\frac{5}{6}$ E. $-\frac{5}{12}$

2015-2016 TMSCA Mathematics Test Seven Answers

1. C	21. D	41. E
2. E	22. A	42. E
3. A	23. B	43. A
4. B	24. C	44. C
5. D	25. B	45. C
6. A	26. A	46. D
7. B	27. E	47. A
8. A	28. E	48. B
9. E	29. C	49. D
10. D	30. C	50. B
11. B	31. D	51. D
12. C	32. B	52. B
13. D	33. D	53. B
14. E	34. C	54. A
15. A	35. A	55. E
16. C	36. E	56. A
17. A	37. C	57. A
18. B	38. B	58. C
19. D	39. E	59. E
20. E	40. B	60. B

2015-2016 TMSCA Test Seven Select Solutions

1	2013-2010 TWISCA TO	
	8. $r = \frac{b}{2}\sqrt{\frac{2a-b}{2a+b}} = \frac{14}{2}\sqrt{\frac{36-14}{36+14}} \approx 4.64$ and the area is	49. If <i>i</i> is the i
	about $\pi (4.64)^2 \approx 67.7$	$\frac{2I+F}{2I+F}$
	12. $(_{11}C_8)(8!) = 6652800$	2 25 for
	21. $\frac{\frac{17}{2}(18)(30)}{\frac{17}{2}(78)(60)} = \frac{18}{78(2)} = \frac{3}{26}$	50. Fo games game. possib $(0.1)^3$
	27. There are 12 letters total with 2-Ns, 2-Gs and 2-Is, so the total number of distinct arrangements will be $\frac{12!}{(2!)(2!)(2!)} = 59875200.$	53. Be will be
	32. Using the Law of Cosines: $13^2 = 15^2 + x^2 - 2(15x)\cos 60$ or $0 = x^2 - 15x + 56$ and the product of the roots is 56	57. p_{q}
	34. In base 10, 25P+5R+Q+16R+4P+Q-9Q-3R-P= 28P-7Q+18R.	$\left(\frac{c}{a}\right)\left(-\frac{c}{a}\right)$
	35. All the possible side lengths are 7, 8, 9, 10, 11, 12 , 13 , 14 , 15 , 16 , 17, 18, 19, 20 and 21, but $a^2 + b^2 > c^2$, where <i>c</i> is the longest side length for the triangle to be acute which is true of the triangles where the last side length is a bold value.	
	36. $_{6+12-1}C_{12} = 6188$	
	41. $331_7 = 169_{10}$ and the square root will be $13_{10} = 16_7$.	
	47. $(c-9)^2 = (a+b)^2$, so $c^2 - 18c + 81 = a^2 + 2ab + b^2$ and $-18c + 81 = 2ab$ for -18c + 81 = 16 and $18c = -65$.	
	48. This is the definition of the derivative of	
	$y = \sin 2\theta$ when $x = \frac{\pi}{3}$ which is -1.	

49. If P is the number or points on the perimeter and I is the number of points on the interior, then the area without the 5 cm scaling factor is

 $\frac{2I+P-2}{2} = \frac{2(16)+11-2}{2} = 20.5$, then multiply by 25 for the area considering the 5 to get 512.5.

50. For a tied series, the teams can either play 3 tie games, or they can each win a game and tie the 3^{rd} game. There are 6 arrangements of the second possibility, so the probability of a tie series is:

$$(0.1)^3 + 6(0.65)(0.25)(0.1) = \frac{197}{2000}$$

53. Because $f(\theta) = a\cos\theta$ is an even function, it will be symmetric about the *y*-axis and the new integral will have a value of 58.

57.
$$pq^2 + p^2q = pq(p+q)$$
 or for a quadratic function
 $f(x) = ax^2 + bx + c$,
 $\left(\frac{c}{a}\right)\left(-\frac{b}{a}\right) = \left(\frac{-135}{28}\right)\left(\frac{-3}{28}\right) = \frac{405}{784}$.

TMSCA HIGH SCHOOL MATHEMATICS TEST#8 © JANUARY 23, 2016

GENERAL DIRECTIONS

1. About this test:

- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA —

			2015-201	l6 TN	ASCA Mathematic	es Te	st 8		
1.	Evaluate: $1 \div (1 +$	4)×5	$-\frac{3}{8}+17\times(18)^{0}$						
A.	$\frac{2453}{8}$	B.	$\frac{333}{8}$	C.	$\frac{141}{8}$	D.	$\frac{237}{8}$	E.	$\frac{673}{40}$
2.	There are 27 stude 14 plan on compe both number sense	ents or ting ir e and :	n a bus on their w n math and 6 are n math?	ay to lot co	a math meet. Eig ompeting in either.	hteer Hov	n plan on competin w many students p	ng in Ian c	number sense, on competing in
A.	4	В.	13	C.	5	D.	11	E.	14
3.	Find the greatest of	comm	on divisor of 306,	680	and 1190.				
A.	17	В.	2	C.	19	D.	34	E.	65
4.	Simplify: $(a^{-4} \div l)$	$(p^2)^{-2} \times$	$a^3 \div b^{-2}$						
A.	$a^{11}b^2$	В.	$a^{11}b^{-2}$	C.	$a^{-5}b^4$	D.	$a^{11}b^6$	E.	$a^{-5}b^{6}$
5.	It takes 5 typists v typists working 5	vorkin hours	ng 4 hours per day per day?	to ty	pe a manuscript ir	n 18 o	days. How many	days	would it take 6
A.	15	В.	8	C.	9	D.	10	E.	12
6.	Brandy walked from How far is Brandy	om ho y's hou	me to school at 4 use from the scho	mph ol? (1	and ran back at 10 nearest tenth)) mpl	h. The entire trip	took	32 minutes.
_A.	1.2 mi	B.	2.1 mi	C.	1.8 mi	D.	1.5 mi	E.	1.6 mi
7.	Find the area of th	e sha	ded region. (near	est te	nth)		_	9	in
							Ч		
A.	70.6 in^2 B.	61.2 i	\sin^2 C. 65.9 in	n^2	D. 46.8 in ² E	. 5	1.7 in ² 8 in		3 in 3 ir
A. 8.	70.6 in^2 B. The intersection of	61.2 i f the t	\sin^2 C. 65.9 in three altitudes of a	n ² a triar	D. 46.8 in^2 E ngle is called $a(n)_{-}$. 5	1.7 in ² 8 in		3 in 3 in 3 ir
A. 8. A.	70.6 in ² B. The intersection o Center	61.2 i f the t B.	in ² C. 65.9 in hree altitudes of a Orthocenter	n ² a trian C.	D. 46.8 in ² E ngle is called a(n)_ Centroid	D.	1.7 in ² _{8 in}	E.	^{3 in} ^{3 in} ^{3 ir} ^{11 in} Circumcenter
A. 8. A. 9.	70.6 in ² B. The intersection of Center If $\frac{2x-5}{x+2} - \frac{3x+4}{x-3}$	61.2 i $f \text{ the t}$ $B.$ $= \frac{Ax^2}{Px^2}$	\sin^2 C. 65.9 in hree altitudes of a Orthocenter $\frac{A+Bx+C}{+Qx+R}$, then $\frac{A}{B}$	a^{2} c. A + B P + Q	D. 46.8 in^2 E ngle is called $a(n)$ Centroid $\frac{+C}{+R}$ equals:	D.	1.7 in ² 8 in	E.	3 in 3 in 3 ir 11 in Circumcenter
A. 8. A. 9.	70.6 in ² B. The intersection of Center If $\frac{2x-5}{x+2} - \frac{3x+4}{x-3}$ 3.5	61.2 i $f \text{ the t}$ $B.$ $= \frac{Ax^2}{Px^2}$ $B.$	an^2 C. 65.9 in hree altitudes of a Orthocenter $\frac{A+Bx+C}{+Qx+R}$, then $\frac{A}{H}$ -3	$\frac{1}{2}$ trian C. $\frac{A+B}{P+Q}$ C.	D. 46.8 in^2 E ngle is called $a(n)$ Centroid $\frac{+C}{+R}$ equals: 2.5	D.	1.7 in ² _{8 in}	E. E.	-3.5
A. 8. A. 9. 10.	70.6 in ² B. The intersection of Center If $\frac{2x-5}{x+2} - \frac{3x+4}{x-3}$ 3.5 A transversal inter	61.2 i f the t $B.$ $= \frac{Ax^2}{Px^2}$ B. resects	an^2 C. 65.9 in three altitudes of a Orthocenter $\frac{A+Bx+C}{+Qx+R}$, then $\frac{A}{H}$ -3 two parallel lines	trian C. $\frac{A+B}{P+Q}$ C. such	D. 46.8 in^2 E angle is called a(n)_ Centroid $\frac{+C}{+R}$ equals: 2.5 a that the measure of	D.	1.7 in ² _{8 in} Incenter 2 e interior angle is	E. E. $(x^2 -$	3 in 3 in 3
A. 8. A. 9. 10.	70.6 in ² B. The intersection of Center If $\frac{2x-5}{x+2} - \frac{3x+4}{x-3}$ 3.5 A transversal inter- measure of the op	61.2 i f the t B. $= \frac{Ax^2}{Px^2}$ B. resects posite	in ² C. 65.9 in three altitudes of a Orthocenter $\frac{A+Bx+C}{+Qx+R}$, then $\frac{A}{H}$ -3 two parallel lines interior angle is	h^{2} $h \text{ trian}$ $C.$ $\frac{A+B}{P+Q}$ $C.$ such $(11x - 1)$	D. 46.8 in^2 E angle is called a(n)_ Centroid $\frac{+C}{+R}$ equals: 2.5 a that the measure of +9)°. What is the	D. D. D. D. D. D.	1.7 in ² _{8 in} Incenter 2 e interior angle is sure of the first an	E. E. $(x^2 - agle?)$	3 in 3 in -3.5 $+3x)^\circ$ and the
A. 8. A. 9. 10.	70.6 in ² B. The intersection of Center If $\frac{2x-5}{x+2} - \frac{3x+4}{x-3}$ 3.5 A transversal inter- measure of the op 88°	61.2 i f the t B. $= \frac{Ax^2}{Px^2}$ B. resects posite B.	in ² C. 65.9 in three altitudes of a Orthocenter $\frac{F+Bx+C}{+Qx+R}$, then $\frac{A}{H}$ -3 two parallel lines interior angle is 108°	h^{2} a trian C. $\frac{A+B}{P+Q}$ C. such (11x- C.	D. 46.8 in^2 E angle is called a(n)_ Centroid $\frac{+C}{+R}$ equals: 2.5 that the measure of $(+9)^\circ$. What is the 72°	D. D. D. D. D. D. D. D.	1.7 in ² _{8 in} Incenter 2 e interior angle is sure of the first an 90°	E. E. $(x^2 - ngle?)$ E.	3 in 3 in -3.5 $+3x)^\circ$ and the 92°
A. 8. 9. 10. 11.	70.6 in ² B. The intersection of Center If $\frac{2x-5}{x+2} - \frac{3x+4}{x-3}$ 3.5 A transversal inter- measure of the op 88° The fundamental p	61.2 i f the t B. $= \frac{Ax^2}{Px^2}$ B. resects posite B. period	in ² C. 65.9 in hree altitudes of a Orthocenter $\frac{F+Bx+C}{+Qx+R}$, then $\frac{A}{B}$ -3 two parallel lines interior angle is 108° l of the graph of y	a^{2} $a \text{ trian}$ $C.$ $\frac{A + B}{P + Q}$ $C.$ such $(11x - C.$ $V = 2^{-1}$	D. 46.8 in^2 E angle is called a(n)_ Centroid $\frac{+C}{+R}$ equals: 2.5 a that the measure of $(+9)^\circ$. What is the 72° $-5\sin^2(3x)$ is:	D. D. D. D. D. D. D. D.	 1.7 in² _{8 in} 	E. E. $(x^2 - agle?)$ E.	3 in 3 in -3.5 $+3x)^{\circ}$ and the 92°
A. 8. 9. 10. A. 11. A.	70.6 in ² B. The intersection of Center If $\frac{2x-5}{x+2} - \frac{3x+4}{x-3}$ 3.5 A transversal inter- measure of the op 88° The fundamental p $\frac{\pi}{3}$	61.2 i f the t $B.$ $= \frac{Ax^2}{Px^2}$ B. resects posite B. period B.	in ² C. 65.9 in three altitudes of a Orthocenter $\frac{F+Bx+C}{+Qx+R}$, then $\frac{A}{R}$ -3 two parallel lines interior angle is 108° 108 of the graph of y $\frac{2\pi}{3}$	a^{2} $a \text{ trian}$ $C.$ $A + B$ $P + Q$ $C.$ such $(11x - C.$ $V = 2 - C.$ $C.$	D. 46.8 in^2 E angle is called a(n)_ Centroid $\frac{+C}{+R}$ equals: 2.5 a that the measure of $(+9)^\circ$. What is the 72° $-5\sin^2(3x)$ is: π	D. D. D. D. D. D. D. D.	1.7 in ² 8 in 	E. E. $(x^2 - x^2)$ E. E.	3 in 3 or 3 in 3 or 3 in 3 or 3
A. 8. A. 9. A. 10. A. 11. A. 12.	70.6 in ² B. The intersection of Center If $\frac{2x-5}{x+2} - \frac{3x+4}{x-3}$ 3.5 A transversal inter- measure of the op 88° The fundamental p $\frac{\pi}{3}$ Given the arithme	61.2 i f the t B. $= \frac{Ax^2}{Px^2}$ B. resects posite B. period B. tic sec	in ² C. 65.9 in three altitudes of a Orthocenter $\frac{F+Bx+C}{+Qx+R}$, then $\frac{A}{B}$ -3 two parallel lines interior angle is 108° l of the graph of y $\frac{2\pi}{3}$ quence 22, <i>a</i> , <i>b</i> , 44	h^{2} $h \text{ trian}$ $C.$ $\frac{A+B}{P+Q}$ $C.$ such $(11x-C.)$ $Q = 2 + C.$ $4.5, c,$	D. 46.8 in^2 E angle is called a(n)_ Centroid $\frac{+C}{+R}$ equals: 2.5 a that the measure of +9)°. What is the 72° $-5\sin^2(3x)$ is: π ,, find the value	D. D. D. D. D. D. D. D. of <i>a</i>	1.7 in ² 8 in 	E. E. $(x^2 - agle?$ E. E.	3 in 3 in 3
A. 8. A. 9. A. 10. A. 11. A. 12. A.	70.6 in ² B. The intersection of Center If $\frac{2x-5}{x+2} - \frac{3x+4}{x-3}$ 3.5 A transversal inter- measure of the op 88° The fundamental p $\frac{\pi}{3}$ Given the arithme 144.75	61.2 i f the t B. $= \frac{Ax^2}{Px^2}$ B. resects posite B. period B. tic sec B.	in ² C. 65.9 in three altitudes of a Orthocenter $\frac{A+Bx+C}{+Qx+R}$, then $\frac{A}{H}$ -3 two parallel lines interior angle is 108°	h^{2} $h \text{ trian}$ $C.$ $\frac{A+B}{P+Q}$ $C.$ such $(11x-C.)$ $V = 2 - C.$ $C.$ $4.5, c,$ $C.$	D. 46.8 in^2 E angle is called a(n)_ Centroid $\frac{+C}{+R}$ equals: 2.5 1 that the measure of +9)°. What is the 72° $-5\sin^2(3x)$ is: π ,, find the value 131.25	D. D. D. D. D. D. D. D. D.	1.7 in ² 8 in 	E. E. $(x^2 - agle?$ E. E. E.	3 in -3.5 -3.5 $+3x)^{\circ} \text{ and the}$ 92° $\frac{3\pi}{2}$ 89
A. 8. 9. 10. 11. A. 11. A. 12. A. 13.	70.6 in ² B. The intersection of Center If $\frac{2x-5}{x+2} - \frac{3x+4}{x-3}$ 3.5 A transversal inter- measure of the op- 88° The fundamental p $\frac{\pi}{3}$ Given the arithme 144.75 A farmer has a cy- height is 8 feet. If gallon)	61.2 i f the t B. $=\frac{Ax^2}{Px^2}$ B. resects posite B. period B. tic sec B. lindric f the ta	in ² C. 65.9 in three altitudes of a Orthocenter $\frac{F}{+Bx+C}$, then $\frac{A}{H}$ -3 two parallel lines interior angle is 108°	h^{2} $h \text{ trian}$ $C.$ $\frac{A + B}{P + Q}$ $C.$ such $(11x - C.$ $V = 2 + C.$ $C.$ $A.5, c,$ $C.$ ing on -third	D. 46.8 in^2 E angle is called a(n)_ Centroid $\frac{+C}{+R}$ equals: 2.5 a that the measure of +9)°. What is the 72° $-5\sin^2(3x)$ is: π ,, find the value 131.25 in the circular base d full, how much v	D. D. D. D. D. D. D. D. D. D. D. D. D.	1.7 in ² 8 in Incenter 2 e interior angle is sure of the first an 90° $\frac{\pi}{2}$ + b + c. 66.5 e radius of the tan must he add to fil	E. E. $(x^2 - bgle?)$ E. E. E. k is 3 1 the	3 in -3.5 -3.5 $+3x)^{\circ} \text{ and the}$ 92° $\frac{3\pi}{2}$ 89 8 feet and the $4 \text{ tank? (nearest)}$

TMSCA 15-1	6 HSMA Te	st 8											Pa	nge 2
14. Given $\begin{bmatrix} 2\\ - \end{bmatrix}$	$\begin{bmatrix} 3 \\ 1 \\ 5 \end{bmatrix} \begin{bmatrix} m \\ n \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 32 \end{bmatrix}$, find	m+n.											
A2	B.	12		C.	-6			D.	-9			E.	-7	
15. Find the n	nean value o	ver the inte	erval [-2	2,8]of	f(x)	$=2x^{2}-$	-3x.							
A. $\frac{770}{3}$	B.	90		C.	9			D.	$\frac{77}{3}$			E.	$\frac{51}{5}$	
16. $[(1+2+3)]$	+4++28	+29)×30]÷[(31+	32+	33+34	++5	58+5	9)×	60]=	?				
A. $\frac{1}{6}$	B.	$\frac{1}{3}$		C.	9			D.	$\frac{1}{9}$			E.	6	
17. Which of	the following I. 5	g prime nu	mbers ar II. 7	e cor	nsiderec III. 2	l to be 3	Germ IV	nain 7.29	Prime)	es?				
A. I & II	B.	III & IV		C.	I, III 8	k IV		D.	II, II	I & IV		E.	All of thes	e
18. The repea in simplif	ting decimal ied form?	0.505050	50 in t	base 6	can be	writte	n as v	whic	ch of t	he foll	owing	g frac	ctions in bas	se 6
A. $\frac{6}{42}$	B.	$\frac{10}{11}$		C.	10			D.	$\frac{5}{42}$			E.	$\frac{5}{11}$	
43 ₆ 19. Which of	the following	116 g is an eau	ation of	the p	1116 erpendi	cular b	isecto	or of	43 ₆ f the l	ine seg	ment	with	11 ₆ endpoints	
(-7,8) an	id $(3, -6)$.	5		n p			10000	01 01					• • • • • • • • • • • • • • • • • • •	
A. $5x - 7y$	=-17 B.	5x-7y	=-9	C.	7 <i>x</i> +5	y = -9		D.	7 <i>x</i> +	5y=9)	E.	5x - 7y = 3	3
20. $(2-2i)^5 =$	=													
A. 128–12	28 <i>i</i> B.	-128-1	28 <i>i</i>	C.	-128 <i>i</i>			D.	128-	+128i		E.	-128+128	Si
21. The point	(x, y) is a po	oint of infle	ection or	f(x)	$\left(x\right) = \frac{\sin x}{1+x}$	$\frac{\ln x}{\cos x}$,	wher	e 0-	< <i>x</i> ≤	3π.F	ind th	e val	ue of x .	
A. 0	B.	π		C.	$\frac{\pi}{2}$			D.	$\frac{\pi}{6}$			E.	2π	
22. Mr. Data	gives a ten q	uestion qui	iz to his	class.	When	he is d	lone g	grad	ling, h	ne give	s the f	follov	wing freque	ncy
table to hi	s class and o the students	ffers extra	credit to	the f $\frac{1}{2}$	first stu earest b	dent to	find	the	mean	. Wha	t is th	e me	an number (of
questions	Questions R	ight	2	3	4	5	6		7	8	9	1	0	
[Number of S	Students	1	4	2	5	4		8	4	2		1	
A. 6.00	B.	6.03		C.	5.97			D.	6.28			E.	6.09	
23. The binor	nial $x-2$ is	a factor of	$6x^3 + Ax$	$x^2 + A$	4x + 30.	Find	the va	alue	of A.					
A. 1	B.	-6		C.	11			D.	-13			E.	9	
24. The illustr Find the a	ration shows rea of the sh	two congr aded regio	uent circ n. (neare	eles ea est squ	ach with uare cer	h a radi ntimete	ius of er)	f 23	cm ar	nd $\theta =$	1.3 ra	dians		$\overline{}$
A. 344 cm ²	² B. 17	8 cm^2	C. 89	cm ²	D.	. 688	cm ²		E. (676 cn	n ²			
													\sim \sim	

TM 25	SCA 15-16 HSM If $f(x) = x^4$ and	A Tes $g(x)$	t = x - 2 then	o (f()	r–	(-1)) =					Page	:3
2 <i>3</i> .	$16x^4 - 32x^3 \pm 2$	S(x)	-x = 2, then $8x = 1$	C = 16r	л .4 _	$(1))^{-1}$	r_1	E	$16x^4 \pm 4x$	^{.3} ± 6	$r^2 \pm 4r = 1$	
л. D	10x - 32x + 2	-1λ	$0_{\mathcal{A}} = 1$	$D 10\lambda$	4	-4x + 0x - 4x	n = 1	Д.	$10\lambda + 4\lambda$	<i>х</i> т 0	$\lambda + + \lambda - 1$	
D. 26	$10x + 32x^2 + 2$ What is the units	4x +	8x + 1	D. 16x	; —	$-32x^{2} + 24x -$	-8x+1					
20. Δ	γ		A 2010	C	r	0	Л	6		F	8	
л. 27	Lamas has a draw	D.	т of unmotob	ad cooks		untoining 6 blo	D.	bita and	111 grov o	L.	If Iamas	
27.	reaches into the d will pick two soci	rawer ks of t	to pull out 2 he same col	2 socks c or?	one	at a time with	out repla	acement	, what is th	ne pr	obability that	he
A.	$\frac{105}{496}$	B.	<u>175</u> 496	($\frac{175}{321}$	D.	$\frac{105}{391}$		E.	$\frac{10}{31}$	
28.	Which of the folle	owing	is NOT a m	nember o	f tl	ne solution set	of 3 1-	2x +9 <	<14 ?			
A.	$\frac{7}{6}$	B.	$-\frac{1}{5}$	($-\frac{1}{3}$	D.	$\frac{4}{9}$		E.	$\frac{12}{11}$	
29.	Given $\frac{A}{2x-5} + \frac{A}{x}$	$\frac{B}{-3} = $	$\frac{x-7}{2x^2-11x+1}$	$\frac{1}{5}$, calcu	lat	e $A \times B$.						
A.	$\frac{7}{6}$	B.	$-\frac{1}{5}$	($-\frac{1}{3}$	D.	$\frac{4}{9}$		E.	-36	
30.	Given that A and	B are	independent	t events,	<i>p</i> ((A) = 0.6 and	$p(A \cup E)$	B) = 0.8	, calculate	p(A	$A \cap B$.	
A.	0.5	B.	0.2	C	Γ.	0.4	D.	0.12		E.	0.3	
31.	Find $f(-2) + f($	1)+ <i>f</i>	(3) if $f(x)$	$=\begin{cases} x-8\\ -x^2,\\ \frac{3}{2}x \end{cases}$,	$x \le 0$ $0 < x \le 1.5.$ x > 1.5						
A.	-4.5	В.	-7.5	(2.	-6.5	D.	-5.5		E.	-8.5	
32.	The center of the	circle	$x^2 + y^2 + 6x$	x-2y-6	5=	0 isu	units from	n the or	igin?			
A.	$\sqrt{10}$	B.	4	C		$2\sqrt{2}$	D.	$\sqrt{6}$		E.	3	
33.	What is the coeffi	icient	of the x^2 ter	m in the	ex	pansion of (72	(x-5)(x-5)(x-5)(x-5)(x-5)(x-5)(x-5)(x-5)	$-3)^{5}$?				
A.	702	B.	1485	(2.	4185	D.	1350		E.	675	
34.	A 96-ft rope is cu longest pieces are sequence?	it into e 2.5 fe	<i>n</i> pieces of eet and 9.5 f	increasir eet long	ng l res	lengths that for spectively. Wh	rm an ari hat is the	ithmetic value o	sequence. of the com	The non	e shortest and difference of t	:he
A.	$\frac{4}{5}$ ft	B.	$\frac{15}{32}$ ft	($\frac{1}{4}$ ft	D.	$\frac{7}{15}$ ft		E.	$\frac{1}{2}$ ft	
35.	Which of the follo	owing	is an equati	on of the	e no	ormal line of the	he functi	on $f(x)$	$z) = \frac{1}{x^2 + 1}$	whe	n $x = 1$	
A.	4x - 2y = 5	B.	4x - 2y = 1	3 (x + 2y = 2	D.	x+2y	r = 0	E.	x - 2y = 2	
				Com		ht @ 2015 TN	1501					

TMS 36. 4	SCA 15-16 HSMA A regular pentagor	Test of si	8 de length of 4 fee	t is ii	nscribed in a circle	e. Fi	nd the area of the	circle	Page 4 e. (nearest tenth)
A.	13.9 ft ²	В.	19.2 ft ²	C.	131.6 ft ²	D.	23.8 ft ²	E.	36.4 ft^2
37.]	Evaluate: $\lim_{x\to 0} \frac{e^x - e^x}{e^x}$	$\frac{1-x}{x}$	<u>x)</u> .						
A.	-1	В.	0	C.	$\frac{1}{2}$	D.	2	E.	Does not exist
38.1	How many disting	uisha	ble arrangements	can b	be made using all o	of the	e letters in "CELE	BRA	TE"?
A.	60480	B.	120960	C.	362880	D.	10080	E.	30240
39. T	The Key Club at a a delegation of 2 g	partio irls ai	cular high school of a chool of a	consi ate c	sts of 8 girls and 5 onference. In how	i boy 7 ma	rs. The club has en ny ways can the de	noug elega	h money to send tion be chosen?
A.	1120	В.	280	C.	715	D.	918	E.	160
40.	$\frac{1}{\csc\theta + \cot\theta} =$								
A.	$\cot\theta - \cos\theta$	В.	$\csc\theta - \cot\theta$	C.	$\sec\theta - \cot\theta$	D.	$\cot\theta - \sin\theta$	E.	$\cos\theta - \tan\theta$
41. A.	A prankster remov 2 stews and 2 chow number of cans Ba $\frac{5}{2}$	ed the vders rry sł B.	 e labels from all o f Barry decides nould expect to op 4/4 	f the to oj en to C.	cans in Barry's pa pen cans until he c successfully oper 2	ntry pens his D.	He has four cans a chowder then s first can of chowd $\frac{3}{2}$	s he k top, f ler. E	knows are soup, find $E(x)$, the $\frac{7}{2}$
42. A.	A candy company square lateral faces $\frac{27\sqrt{3}}{27}$ cm ³ B	desig as sl	3 ned a box in the s nown. If each edg $\frac{1\sqrt{3}}{2}$ cm ³ C.	hape ge is $\frac{2}{\sqrt{2}}$	of a prism with re 3 cm. long, what is $\overline{3}$ cm ³ D. 54	gula the $\sqrt{3}$	2 r hexagonal bases volume of the box cm ³ E. $\frac{27\sqrt{3}}{27\sqrt{3}}$	and $\frac{1}{3}$ cm	⁶ ₃
42. 42. 43. 0	A candy company square lateral faces $\frac{27\sqrt{3}}{2} \text{ cm}^3 \text{B}$ Given $a_1 = -1, a_2$	designals as shored end of the second secon	3 ned a box in the s nown. If each edg $\frac{1\sqrt{3}}{2}$ cm ³ C. and $a_n = \frac{a_{n-2}}{a_{n-1}}$ find	hape ge is $\frac{2}{\sqrt{2}}$	of a prism with re 3 cm. long, what is $\overline{3} \text{ cm}^3 \text{ D. } 54$ value a_6 .	gulas the $\sqrt{3}$	2 r hexagonal bases volume of the box cm ³ E. $\frac{27\sqrt{3}}{4}$	and $\frac{3}{2}$ - cm	
42. A. A. 43. (A.	A candy company square lateral faces $\frac{27\sqrt{3}}{2} \text{ cm}^3 \text{B}$ Given $a_1 = -1, a_2$ $\frac{81}{16}$	designs as showing $\frac{8}{2}$ = $\frac{3}{2}a$ B.	3 ned a box in the s nown. If each edg $\frac{1\sqrt{3}}{2}$ cm ³ C. and $a_n = \frac{a_{n-2}}{a_{n-1}}$ find $\frac{243}{32}$	hape the is $\frac{2}{\sqrt{2}}$ of the $\frac{1}{\sqrt{2}}$	of a prism with re 3 cm. long, what is $\overline{3}$ cm ³ D. 54 value a_6 . $\frac{27}{8}$	by gula solution the $\sqrt{3}$ of $\sqrt{3}$ d	2 r hexagonal bases volume of the box cm ³ E. $\frac{27\sqrt{3}}{4}$ $-\frac{243}{32}$	and 2? 3 - cm E.	$\frac{6}{3}$
42. 4 A. 43. 0 A. 44. 1	A candy company square lateral faces $\frac{27\sqrt{3}}{2} \text{ cm}^3 \text{B}$ Given $a_1 = -1$, $a_2 = \frac{81}{16}$ Let $f(x) = \frac{6x^3 + 5}{2x^2}$	desig as sh $=\frac{3}{2}a$ B. $\frac{5x-8}{-7}$	3 ned a box in the s nown. If each edge $\frac{1\sqrt{3}}{2}$ cm ³ C. and $a_n = \frac{a_{n-2}}{a_{n-1}}$ find $\frac{243}{32}$ and $s(x)$ be the	hape ge is $\frac{2}{\sqrt{2}}$ l the $\frac{1}{\sqrt{2}}$ C.	of a prism with re 3 cm. long, what is $\overline{3}$ cm ³ D. 54 value a_6 . $\frac{27}{8}$ t asymptote of $f(.$	gula the $\sqrt{3}$ D. x).	2 r hexagonal bases volume of the box cm ³ E. $\frac{27\sqrt{3}}{4}$ $-\frac{243}{32}$ Calculate $s(-2)$.	E.	$\frac{6}{3}$
42. 43. 43. 43. 44. 1 A. 44. 1 A.	A candy company square lateral faces $\frac{27\sqrt{3}}{2} \text{ cm}^3 \text{B}$ Given $a_1 = -1$, a_2 $\frac{81}{16}$ Let $f(x) = \frac{6x^3 + 5}{2x^2}$ -6	designals as showing as showing as showing as $\frac{8}{2}$ = $\frac{3}{2}a$ B. $\frac{5x-8}{-7}$ B.	3 ned a box in the s nown. If each edge $\frac{1\sqrt{3}}{2}$ cm ³ C. and $a_n = \frac{a_{n-2}}{a_{n-1}}$ find $\frac{243}{32}$ and $s(x)$ be the -4	hape ge is $\frac{2}{27}\sqrt{2}$ I the $\frac{1}{27}$ C. Slant C.	of a prism with re 3 cm. long, what is $\overline{3}$ cm ³ D. 54 value a_6 . $\frac{27}{8}$ t asymptote of $f(.$ 4.5	gula the $\sqrt{3}$ D. x).	2 r hexagonal bases volume of the box cm ³ E. $\frac{27\sqrt{3}}{4}$ $-\frac{243}{32}$ Calculate $s(-2)$.	and ² ³ ⁻ cm E.	6 3 $\frac{8}{27}$ -4.5
42. 4 A. 43. 0 A. 44. 1 A. 45. 0	A candy company square lateral faces $\frac{27\sqrt{3}}{2} \text{ cm}^3 \text{B}$ Given $a_1 = -1$, a_2 $\frac{81}{16}$ Let $f(x) = \frac{6x^3 + 5}{2x^2}$ -6 On the triangle AB AB. (nearest hund	desig as sh $= \frac{3}{2} a$ B. $\frac{5x-8}{-7}$ B. C, m. redth	3 ned a box in the s nown. If each edge $\frac{1\sqrt{3}}{2}$ cm ³ C. and $a_n = \frac{a_{n-2}}{a_{n-1}}$ find $\frac{243}{32}$ and $s(x)$ be the -4 $\angle A = 35^\circ$, $BC = 4$	hape ge is $\frac{2}{27}\sqrt{2}$ l the C. slant C. cm	of a prism with re 3 cm. long, what is 3 cm ³ D. 54 value a_6 . $\frac{27}{8}$ t asymptote of $f(.$ 4.5 and $AC = 6.5$ cm.	gula the $\sqrt{3}$ D. x). D. Fin	2 r hexagonal bases volume of the box cm ³ E. $\frac{27\sqrt{3}}{4}$ $-\frac{243}{32}$ Calculate $s(-2)$. 6 d the sum of the t	and 3 - cm E. E. wo p	$\frac{8}{27}$ -4.5 ossible values of
42. 4 A. 43. 0 A. 44. 1 A. 45. 0 A.	A candy company square lateral faces $\frac{27\sqrt{3}}{2} \text{ cm}^3 \text{B}$ Given $a_1 = -1$, a_2 $\frac{81}{16}$ Let $f(x) = \frac{6x^3 + 5}{2x^2}$ -6 On the triangle <i>AB</i> <i>AB</i> . (nearest hund 14.42	desig as sh $=\frac{3}{2}a$ $=\frac{3}{2}a$ B. $\frac{5x-8}{-7}B.$ C, m. bredth B.	3 ned a box in the s nown. If each edge $\frac{1\sqrt{3}}{2}$ cm ³ C. and $a_n = \frac{a_{n-2}}{a_{n-1}}$ find $\frac{243}{32}$ and $s(x)$ be the -4 $\angle A = 35^\circ$, $BC = 4$) 10.25	hape ge is $\frac{2}{27}\sqrt{1}$ I the C. slant C. cm C.	of a prism with re 3 cm. long, what is 3 cm ³ D. 54 value a_6 . $\frac{27}{8}$ t asymptote of $f(.$ 4.5 and $AC = 6.5$ cm. 7.5	gula the $\sqrt{3}$ D. x). D. Fin D.	2 r hexagonal bases volume of the box cm ³ E. $\frac{27\sqrt{3}}{4}$ $-\frac{243}{32}$ Calculate $s(-2)$. 6 id the sum of the tr 10.65	and 2? 5- cm E. Wo p E.	$\frac{8}{27}$ -4.5 ossible values of 13.55
42. 4 A. 43. 0 A. 44. 1 A. 45. 0 A. 46. 7	A candy company square lateral faces $\frac{27\sqrt{3}}{2} \text{ cm}^3 \text{B}$ Given $a_1 = -1$, $a_2 = \frac{81}{16}$ Let $f(x) = \frac{6x^3 + 5}{2x^2}$ -6 On the triangle AB AB. (nearest hund 14.42 What is the equation	desig as sh $= \frac{3}{2} a$ $= \frac{3}{2} a$ B. $\frac{5x - 8}{-7}$ B. C, m. redth B. on of	3 ned a box in the s nown. If each edge $\frac{1\sqrt{3}}{2}$ cm ³ C. and $a_n = \frac{a_{n-2}}{a_{n-1}}$ find $\frac{243}{32}$ and $s(x)$ be the -4 $\angle A = 35^\circ$, $BC = 4$) 10.25 the directrix of a p	hape ge is $\frac{2}{27}\sqrt{2}$ l the C. slant C. cm C. parab	of a prism with re 3 cm. long, what is 3 cm ³ D. 54 value a_6 . $\frac{27}{8}$ t asymptote of $f(.$ 4.5 and $AC = 6.5$ cm. 7.5 pola with the equat	gula the $\sqrt{3}$ D. x). D. Fin D. ion	2 r hexagonal bases volume of the box cm ³ E. $\frac{27\sqrt{3}}{4}$ $-\frac{243}{32}$ Calculate $s(-2)$. 6 id the sum of the tr 10.65 $x^2 + 24y - 8x = -16$	and 3 - cm E. Wo p E. 6?	$\frac{8}{27}$ -4.5 ossible values of 13.55
42. 4 A. 43. 0 A. 44. 1 A. 45. 0 A. 46. 7 A.	A candy company square lateral faces $\frac{27\sqrt{3}}{2} \text{ cm}^3 \text{B}$ Given $a_1 = -1$, $a_2 = \frac{81}{16}$ Let $f(x) = \frac{6x^3 + 5}{2x^2}$ -6 On the triangle AB AB. (nearest hund 14.42 What is the equation x = 4	desig as sh $=\frac{3}{2}a$ $=\frac{3}{2}a$ B. $\frac{5x-8}{-7}$ B. C, m. redth B. on of B.	3 ned a box in the s nown. If each edge $\frac{1\sqrt{3}}{2}$ cm ³ C. and $a_n = \frac{a_{n-2}}{a_{n-1}}$ find $\frac{243}{32}$ and $s(x)$ be the -4 $\angle A = 35^\circ$, $BC = 4$) 10.25 the directrix of a p y = -6	hape ge is $\frac{2}{27}\sqrt{2}$ l the C. slant C. cm C. parab C.	of a prism with re 3 cm. long, what is 3 cm ³ D. 54 value a_6 . $\frac{27}{8}$ t asymptote of $f(.$ 4.5 and $AC = 6.5$ cm. 7.5 pola with the equat y = -4	gula the $\sqrt{3}$ D. x). D. Fin D. ion . D.	2 r hexagonal bases volume of the box cm ³ E. $\frac{27\sqrt{3}}{4}$ $-\frac{243}{32}$ Calculate $s(-2)$. 6 id the sum of the tr 10.65 $x^2 + 24y - 8x = -16$ x = -6	and 3 - cm E. Wo p E. 6? E.	6 $\frac{8}{27}$ -4.5 ossible values of 13.55 $y = 6$
42. 4 A. 43. 0 A. 44. 1 A. 45. 0 A. 46. 7 A. 47. 0	A candy company square lateral faces $\frac{27\sqrt{3}}{2} \text{ cm}^3 \text{B}$ Given $a_1 = -1$, $a_2 = \frac{81}{16}$ Let $f(x) = \frac{6x^3 + 5}{2x^2}$ -6 On the triangle AB AB. (nearest hund 14.42 What is the equation x = 4 Given $f''(x) = 18x$	desig as sh $=\frac{3}{2}a$ $=\frac{3}{2}a$ B. $\frac{5x-8}{-7}$ B. C, m. redth B. on of B. x-10	3 ned a box in the s nown. If each edge $\frac{1\sqrt{3}}{2}$ cm ³ C. and $a_n = \frac{a_{n-2}}{a_{n-1}}$ find $\frac{243}{32}$ and $s(x)$ be the -4 $\angle A = 35^\circ$, $BC = 4$) 10.25 the directrix of a p y = -6 , $f'(2) = 24$ and	hape $27\sqrt{2}$ 1 the C. slant C. cm C. parab C. f(2)	of a prism with re of a prism with re 3 cm. long, what is $\overline{3}$ cm ³ D. 54 value a_6 . $\frac{27}{8}$ at asymptote of $f(.$ 4.5 and $AC = 6.5$ cm. 7.5 pola with the equat y = -4) = 19, calculate $f(.$	gula the $\sqrt{3}$ D. x). D. Fin D. ion D. (1)	2 r hexagonal bases volume of the box cm ³ E. $\frac{27\sqrt{3}}{4}$ $-\frac{243}{32}$ Calculate $s(-2)$. 6 id the sum of the tr 10.65 $x^2 + 24y - 8x = -16$ x = -6	and 3 - cm E. Wo p E. 6? E.	$\frac{8}{27}$ -4.5 ossible values of 13.55 y = 6
42. 4 A. A. 43. 0 A. 44. 1 A. 45. 0 A. 45. 0 A. 46. 7 A. 47. 0 A.	A candy company square lateral faces $\frac{27\sqrt{3}}{2} \text{ cm}^3 \text{B}$ Given $a_1 = -1$, $a_2 = \frac{81}{16}$ Let $f(x) = \frac{6x^3 + 5}{2x^2}$ -6 On the triangle AB AB. (nearest hund 14.42 What is the equation x = 4 Given $f''(x) = 18x$ -2	desig as sh $= \frac{3}{2} a$ B. $\frac{5x-8}{-7}$ B. C, m. Fredth B. on of B. x-10 B.	3 ned a box in the s nown. If each edge $\frac{1\sqrt{3}}{2}$ cm ³ C. and $a_n = \frac{a_{n-2}}{a_{n-1}}$ find $\frac{243}{32}$ and $s(x)$ be the -4 $\angle A = 35^\circ$, $BC = 4$) 10.25 the directrix of a p y = -6 , $f'(2) = 24$ and 6	hape ge is $\frac{2}{27}\sqrt{2}$ I the C. slant C. cm C. parab C. f(2) C.	of a prism with re 3 cm. long, what is 3 cm ³ D. 54 value a_6 . $\frac{27}{8}$ t asymptote of $f(.$ 4.5 and $AC = 6.5$ cm. 7.5 pola with the equat y = -4) = 19, calculate $f(.$	gula the $\sqrt{3}$ D. D. Tin D. ion D. (1). C. D.	2 r hexagonal bases volume of the box cm ³ E. $\frac{27\sqrt{3}}{4}$ $-\frac{243}{32}$ Calculate $s(-2)$. 6 id the sum of the tr 10.65 $x^2 + 24y - 8x = -16$ x = -6	and 3 - cm E. E. wo p E. 6? E. E.	$\begin{cases} 6 \\ 3 \\ \hline \\ 8 \\ 27 \\ \hline \\ -4.5 \\ \text{ossible values of} \\ 13.55 \\ y = 6 \\ -1 \end{cases}$
49. Let $a = \log x$, $b = \log y$ and $c = \log z$. What is $\log \left(\frac{x^2 \sqrt{y^3}}{z^3}\right)$ in terms of a, b and c? A. $\frac{3ab}{2} - 3c$ B. $2a + \frac{3}{2}b - 3c$ C. $\frac{a^2\sqrt{b^3}}{c^3}$ D. $-\frac{3ab}{2c}$ E. $a^2 + \sqrt{b^3} - c^3$ 50. The line y = 20x - 7 is tangent to the curve $y = 5x^3 + ax^2 + bx + 11$ at the point (1, 13). Find the value a + b. A. B. -11 C. -3 D. 7 -7 E. 3 51. The operation € is defined as $A \in B = A^3 + B^3$. Compute $3 \in (1 \in 2)$. A. 27 B. 1008 C. 756 D. 42876 E. 36 52. The function f is such that $\int_{-1}^{3} f(x) dx = 7$. What is the value of $\int_{3}^{-1} (2f(x) + 3) dx$? B. -26 C. 10 A. 17 D. -17 E. 26 53. The equation $3x^2 - 5x + k = 0$ always has two positive roots when which of the following is true? A. $-\frac{25}{12} < x < \frac{25}{12}$ B. $0 < k < \frac{25}{12}$ C. $-\frac{25}{12} < x < 0$ D. $-\frac{12}{25} < x < 0$ E. $-\frac{12}{25} < x < \frac{12}{25}$ 54. Find the area in square units of a scalene triangle whose vertices are (-2, -1), (2, 12) and (3, 3). B. 30.5 C. 22.5 D. 25.5 E. 24.5 A. 27.5 55. Let a, b and c be real numbers such that c = a + b + 16, $c^2 = a^2 + b^2$ and ab = 10. Find the numeric value of 16*c*. A. 118 B. 236 C. 123 D. 246 E. 126 56. $654_7 + 543_6 + 432_5 = __{10}$. B. 1629 A. 681 C. 657 D. 682 E. 412 57. All ten points on the star shown are congruent. What is the measure of angle A? A. 45° B. 30° C. 32° E. 40° D. 36° 58. $\ln(x)^2 + \ln(x^3)^2 + \ln(x^5)^2 + \dots + \ln(x^{29})^2 =$ A. $(\ln x)^{450}$ B. $(\ln x)^{255}$ C. $255(\ln x)$ D. $\ln x^{420}$ E. $\ln x^{450}$ 59. If $y = \frac{9}{x}$ and x + y = 12, then $x^3 + y^3 =$ A. 1404 B. 1701 C. 1512 D. 1620 E. 1728 60. $\sum_{k=1}^{\infty} \frac{2}{3} \left(-\frac{3}{4} \right)^k =$ A. $\frac{8}{21}$ B. $-\frac{2}{7}$ C. $\frac{8}{3}$ D. $\frac{3}{14}$ E. $\frac{3}{2}$

Page 5

2015-2016 TMSCA Mathematics Test Eight Answers

1. C	21. E	41. A
2. D	22. B	42. B
3. D	23. D	43. D
4. D	24. B	44. A
5. E	25. A	45. D
6. D	26. D	46. E
7. C	27. В	47. D
8. B	28. C	48. A
9. C	29. E	49. B
10. B	30. E	50. C
11. A	31. C	51. C
12. B	32. A	52. B
13. D	33. C	53. B
14. A	34. D	54. E
15. D	35. B	55. A
16. A	36. E	56. C
17. C	37. D	57. D
18. B	38. A	58. E
19. A	39. B	59. A
20. E	40. B	60. D

2015-2016 TMSCA Mathematics Test Eight Select Solutions

5. (5 typist)(72 hours)(hourly rate of one typist) = 1job, so (hourly rate) = 1/360. To find the days, (6 typists)(5 hours per day)(1/360)(number of days) = 1 solve for 12 days. 6. Let *t* be the time it took to walk to school. Then $4t = 10\left(\frac{32}{60} - t\right)$ for $t \approx 0.38$ hours and the distance to school will be $4(0.38) \approx 1.5$ miles 2 16. $\frac{\frac{1}{2}(29)(30)(30)}{\frac{1}{2}(29)(90)(60)} = \frac{1}{6}$ $100n_6 = 50.50_6$ 18. $\frac{n_6}{55n_6} = \frac{0.\overline{50}_6}{55}$, so $\frac{50}{55_6} = \frac{30}{35_{10}} = \frac{6}{7_{10}} = \frac{10}{11_6}$ 24. Half of the shaded region can be found by using $A = \frac{r^2 \theta}{2}$, so the whole shaded region can be found using $r^2 \theta = 23^2 (1.3) \approx 688$. 59. 29. A(x-3)+B(2x-5)=x-7. Let x=3 for B = -4 and $x = \frac{5}{2}$ for A = 9 and a product of -36. 30. Use 0.8 = 0.6 + p(B) - 0.6 p(B) for p(B) = 0.5and $p(A \cap B) = (0.6)(0.5) = 0.3$. 32. Complete the squares for $(x+3)^2 + (y-1)^2 = 14$ which is a circle with a center at (-3,1) and a distance from the origin of $\sqrt{(-3)^2 + 1^2} = \sqrt{10}$. 33. There will be two terms of the binomial expansion that will have an exponent of 2 when they are multiplied by terms in (7x-5). $7x(5(x)(-3)^4) + (-5)(10(x)^2(-3)^3) = 4185$

34. Use the sum of the sequence $96 = \frac{n}{2}(12)$ for n = 16, then 9.5 = 2.5 + (16-1)d and $d = \frac{7}{15}$. 35. Use L'Hopital's rule and evaluate $\lim_{x \to 0} \frac{e^x + 1}{1} = 2.$

41.
$$E(x) = 1\left(\frac{2}{4}\right) + 2\left(\frac{2}{4} \times \frac{2}{3}\right) + 3\left(\frac{2}{4} \times \frac{1}{3} \times \frac{2}{2}\right) = \frac{5}{3}$$

45. Solve the equation 13 = 5 + a + b + 11 for a + b = -3.

55.
$$(c-16)^2 = (a+b)^2$$
, so
 $c^2 - 32c + 256 = a^2 + 2ab + b^2$ and $-32c + 256 = 2ab$
or $-32c + 256 = 20$ and $16c = 118$.

58. This can be rewritten as

 $2\ln x + 6\ln x + 10\ln x + ... + 58\ln x$, the coefficients form an arithmetic sequence with a sum of 450, so the sum of the sequence is $\ln x^{450}$.

).

$$x^{3} + y^{3} = (x + y)(x^{2} - xy + y^{2}) = 12(144 - 3(9)) = 1404$$

TMSCA HIGH SCHOOL MATHEMATICS TEST#9 © JANUARY 30, 2016

GENERAL DIRECTIONS

1. About this test:

- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA 2015-2016 TMSCA Mathematics Test 9

- 1. Evaluate: $(\overline{.3})(6!) \div (.4)(7!) 10!$
- A. -3628800 B. -2116800 C. -907200 D. -3628800 E. -604800

2. Three million, three hundred eighteen thousand, three hundred one plus thirty-six thousand, fifty is subtracted from six million, six thousand, six. What is the sum of the digits in the difference when written out using digits instead of words?

A. 28 B. 31 C. 29 D. 27 E. 30

3. Bonnie plans to buy three dozen cupcakes that usually cost \$1.25 each. She pays full price for the first dozen, receives a 15% discount on the second dozen, a 20% discount on the third dozen, and pays 8.25% sales tax on the total. How much will her order cost?

A. \$43.03 B. \$39.75 C. \$38.97 D. \$38.95 E. \$48.71

4. If -3(5-x) = (x-5)(x-8), where $x \neq 5$, then 2x+8 =

- A. 11 B. 22 C. 30 D. 41 E. 18
- 5. Simplify: $\frac{x(x+2)!}{(x-3)!} \div \frac{x!}{(x-1)!}$

A. $x^{6} - 5x^{4} + 4x^{2}$ B. $\frac{x^{2}}{x^{2} - 3x + 2}$ C. $x^{5} - 5x^{3} + 4x$ D. $x^{5} + 5x^{3} + 4x$

 $x^{5} + 5x^{3} + 4x$ E. $\frac{x^{5} - 5x}{x^{5} - 5x}$

$$\frac{x^5 - 5x^3 + 4x}{x^2}$$

- 6. Find the equation of the line parallel to the one shown and through the point (-2,3).
- A. x + y = 1 C. x y = 1 E. x + y = -1
- B. x + y = -5 D. x y = -5

20.1

9″

7"

- 7. Carla drove the same route to work 5 days last week. Her mean speeds for each day were: 18 mph, 25 mph, 15 mph, 27 mph, and 16 mph. Calculate her average speed for the whole week. (nearest tenth mph)
- A. 19.1 mph B. 20.2 mph C. 19.6 mph D. 20.0 E.
- 8. The circle in the illustration is inscribed in the triangle. Find the circumference of the circle. (nearest tenth)
- A. 16.9 in B. 14.6 in C. 15.2 in D. 19.6 in E. 15.9 in
- 9. The radius of a cone is 16 in. and the volume is 1106 in³. Find the total surface area of the cone. (nearest tenth square foot)
- A. 804.2 ft^2 B. 830.6 ft^2 C. 1011.6 ft^2 D. 2465.4 ft^2 E. 1634.8 ft^2 10. If $\frac{A}{(x-8)} + \frac{B}{(3x-1)} = \frac{17x-21}{3x^2-25x+8}$, then AB = ?
- A. -4 B. 10 C. 4 D. 16 E. 24

Copyright © 2015 TMSCA

TMSCA 15-16 HSMA Test 9

11. A m	regular heptagor neasure of $\angle ACE$	n with ? (ne	vertices A, B, C, arest degree)	D, E,	, F and G respecti	vely	is inscribed in a ci	ircle.	What is the
A.	154°	B.	51°	C.	103°	D.	77°	E.	129°
12. N si	ine council mem t next to each oth	bers n er. Ir	leed to sit at a rou how many distir	nd ta	ble with nine chai rangements can th	rs, bu ie me	ut there are two m mbers sit?	embe	ers who can not
A.	35280	B.	32760	C.	282240	D.	322560	E.	30240
13. A w	scientist needs 1 vith 15% solution	2 lite to ob	rs of 18% salt soltain the 18% solu	ution tion?	for an experiment (nearest millilite	t. Ho r)	ow much 20% solu	ution	should she mix
A.	1029 ml	В.	7200 ml	C.	4800 ml	D.	10971 ml	E.	8000ml
14. T	he altitude to the I. Angle Bisec	base tor	of an isosceles tri II.	angle Medi	is also a(n) ian		III. Perpendicu	lar B	isector
A.	I &II	B.	I &III	C.	II &III	D.	II only	E.	All of these
15. W	That is the sum of	f the f	irst 10 terms of th	ne geo	ometric sequence	1, 3, 9	9, 27,		
A.	29524	B.	98420	C.	32807	D.	196840	E.	28844
16. D	etermine the peri	od of	$f(x) = -7 + 3\cos(\theta)$	$s(2\pi)$	(x-3),				
A.	3	B.	1	C.	π	D.	3π	E.	$\frac{\pi}{3}$
17. G	iven that the mat	rix A	$= \begin{bmatrix} 1 & -1 & 2 \\ 2 & k & 3 \\ 1 & -2 & 5 \end{bmatrix} ha$	as no	inverse, find the v	alue	of <i>k</i> .		
A.	$-\frac{5}{3}$	B.	1	C.	$\frac{9}{7}$	D.	$-\frac{5}{7}$	E.	3
18. T	he complex numl	ber z	=a+bi, for a,be	∈ R s	atisfies the equati	on <i>i</i> ((z+2) = 1-2z Fi	nd th	e value of $a+b$
А.	-1	B.	1	C.	$\frac{1}{3}$	D.	$-\frac{4}{3}$	E.	$\frac{4}{3}$
19. F	ind the sum of all	the c	ritical points of <i>j</i>	f(x) =	$=8x^3-33x^2-63x$	+6.			
A.	$-\frac{21}{8}$	B.	$\frac{21}{8}$	C.	$\frac{11}{4}$	D.	$-\frac{11}{4}$	E.	$\frac{21}{4}$
20. U	se the Fibonacci	chara	cteristic sequence	e,6	$, p, 4, q, 6, r, \dots$ to f	ind J	p+q+r.		
A.	8	B.	12	C.	10	D.	14	E.	6
21. S	olve the equation	: 25 ^x	$^{-1} = \left(\frac{1}{5}\right)^{2x}.$						
A.	$-\frac{1}{2}$	B.	2	C.	1	D.	$\frac{1}{2}$	E.	$-\frac{1}{4}$
22. G	fiven $x = 7 + y$ and	nd xy	$=14$, then $x^3 - y^3$	3 = ?					
A.	637	B.	539	C.	343	D.	441	E.	392

TM	SCA 15-16 H	ISMA	Test	9													Page 3
23	A quadrilater	al is in	nscrib	ed in a ci	rcle.	The m	easur	es of tw	o ang	gles o	pposi	te ea	ch of	ther	are	$(x^2 - 12)$	$x)^{\circ}$ and
	$(3x-10)^{\circ}$. F	Find th	e mea	asure of th	ne lar	ger ang	gle.										
A.	160°		B.	90°		C.	133	3°		D.	20°				E.	47°	
24.]	How many no	on-neg	gative	proper fr	actio	ns in lo	owest	terms h	nave a	dend	omina	tor o	f 283	?			
A.	14		B.	12		C.	11			D.	10				E.	9	
25. T	The length ar the rectangle.	nd wid	lth of	a rectang	le ha	ve a rat	io of	15:8 an	d the	lengt	h a di	agon	al is	3.4	ft. F	Find the	area of
A.	2.4 ft^2		B.	$3.6 {\rm ft}^2$		C.	5.4	ft^2		D.	5.1 1	ft ²			E.	4.8 ft^2	
26.]	Points A, B, 6 and CP = 12"	C and '. (dra	D lie awing	on the cir g not to sc	rcle s ale)	hown.	Find	AB if E	3P = 8	3", D	C = 1	8"	A	F		В	\mathbb{Z}^{P}
A.	37 in	B. 2	27 in	C.	24	in	D.	31 in		E.	42 in	1					
27.	How many di	istinct	arran	gements	can b	e made	usin	g all of	the le	tters	in the	wor	ds "S	STA'	TEN	MEET"	?
A	60480		B	90720		С	45	860		D	560				E	10080	-
21. 28	A 25 ft ladd	lar is s	D.	down au	wall -	c. at a rate	r_{2}	inches	norse	D.	I Wh	oon th	a to	n of	L. tha l	lodder i	7 ft
20.	from the floo	r, the	angle	the ladde	er mal	kes wit	h the	wall is	chang	ing a	it a rat	te of		ra	adia	ns per s	econd.
A.	0.0007		В.	0.0833		C.	1.0	032		D.	0.00	69			E.	0.0803	
29. ' A	Two fair six- 5:6	sided	dice a B	are rolled.	Wh	at are tl	he od 8.3	ds that t	the su	m of D	the to 8.11	op fac	es is	s a de	efici E	ent nun 31·5	nber?
30.7	The real valu	و دماین	D. tion s	et of $ 3r $	∟1 ⊥∶	$2 \sim 11 \text{ is}$	e. 0.5			D.	0.11				ц.	51.5	
50.		C 5010		01 51			3.										
A.	$\left\{ x \middle -\frac{7}{3} < x \right\}$	< 3 }			C.	$\left\{ x \middle \left\{ x \right\} \right\}$	<-3]	$\left\{ \cup \left\{ x > \right\} \right\}$	$\left\{\frac{7}{3}\right\}$		E.	{x	; -3·	< x <	$\left\{\frac{7}{3}\right\}$		
B.	$\left\{ x \middle -3 < x < \right.$	$\left\{-\frac{7}{3}\right\}$			D.	$\left\{ x \middle \left\{ x \right\} \right\}$	$<-\frac{7}{3}$	$\left\{\frac{x}{3}\right\} \cup \left\{x\right\}$	> 3}								
31. `	What is the c	onstar	nt tern	n in the bi	inom	ial expa	ansio	n of $\left(2\right)$	$x^2 - \frac{5}{x}$	$\left(\right)^{6}$?							
A.	15		B.	2500		C.	200	000		D.	3750	00			E.	1000	
32. 1	Let $a_1 = 7$, a_2	$u_2 = -2$	2 and	$a_n = a_{n-2}$	$-2a_{\mu}$	$_{n-1}$. Fir	nd a_6										
A.	59		B.	-142		C.	-24			D.	-66				E.	25	
33.	Given that the of the fourth	e mult row ai	tiples nd sev	of three c	contir	ue in tl	he tri	angular	patter	n sh	own b	elow	. Fi	nd th	ne su	ım of th	e means
A.	210		C.	168		E.	117			30	15	6 18 36	3 9 21 30	12 24 42	27	48	(row 0) (row 1) (row 2) (row 3)
B.	234		D.	264						50	55	50		72	40	70	()
34. "	Two workers as long and ty	can p wice a	aint a s high	fence in	three ach r	hours.	Hov the s	v long w ame rate	vould e?	it tak	thre	ee wo	orker	s to	pain	it a fenc	e twice
А.	4 hours		В.	6 hours	r	C.	12	hours		D.	9 ho	ours			E.	8 hours	5

Copyright © 2015 TMSCA

TMS	CA 15-16 HSMA	A Test	9						Page 4
35. F	Find the area of the	e ellip	ose with the equat	ion 9	$x^2 + 25y^2 - 36x +$	-150 <i>y</i>	= -36.		
A.	25π	B.	$\frac{25\pi}{9}$	C.	9π	D.	$\frac{9\pi}{25}$	E.	15π
36. I	f P, Q and R repre	esent o	digits then PRQ_6	+ RP	$Q_5 - QRP_4$ has a r	numer	ic value in base 1	0 of:	
A.	40P + 27R - 14Q	B.	40P + 27R + 18Q	C.	42P + 35R - 14Q	D.	40P + 27R - 18Q	E.	42P + 35R + 18Q
37. F	find the acute ang	le tha	t the line $3x + 4y =$	=18 fc	orms with the x-ar	xis. (1	nearest hundredth)	
А.	41.41°	В.	48.59°	C.	33.69°	D.	36.87°	E.	12.52°
38. N c	Ayrtle has eight date an repeat colors?	ifferei	nt colors of marke	ers. I	n how many way	s can	she package four	mark	ers to sell if she
A.	495	B.	220	C.	210	D.	70	E.	330
39. H	How many scalene	e acute	e triangles with in	itegra	l sides exist with	sides	9", 14" and x"?		
A.	7	В.	4	C.	6	D.	5	E.	14
40. It	f $\overline{AB} \cong \overline{AC}$, then	the a	rea of triangle AE	BD is	\ft^2 .			А	
A.	$36\sqrt{2}$ B.	18√2	C. 27		D. 54	E.	$9\sqrt{2}$	6 [°]	\backslash
		·						/	\backslash
41. I	f $\frac{x-6}{x+22} + \frac{x+22}{x-6}$	is equ	al to the mixed nu	ımbeı	$A \frac{B}{(x+22)(x-6)}$	$\overline{6}$, the	en $B = B$	4'	C 5' D
A.	784	B.	256	C.	132	D.	264	E.	324
42. T	The square root of	2011	in base 5 is:						
A.	1405	В.	14 ₅	C.	31 ₅	D.	34 ₅	E.	41 ₅
43. I	f $\int_{-2}^{4} f(x) dx = 10$.5 the	n $\int_{-2}^{4} (f(x) + 3) dx$	<i>x</i> =					
A.	21	В.	13.5	C.	22.5	D.	28.5	E.	16.5
44. S	Solve $\log_3 x + \log_3 x$	$x_{3}(x -$	6)=3.						
A.	9	В.	6	C.	-3	D.	3	E.	-6
45. V	What is the area of	f a hey	xagon with an apo	othem	length of 1 cm?				
A.	$\frac{\sqrt{3}}{2}$ cm ²	B.	$\frac{8\sqrt{2}}{3} \text{ cm}^2$	C.	$\frac{\sqrt{2}}{3}$ cm ²	D.	$2\sqrt{3}$ cm ²	E.	$\frac{8\sqrt{3}}{2} \text{ cm}^2$
46. L	et the region R be	e in th	e first quadrant b	ounde	ed by the x-axis,	y-axis	and the graph of	f(x)	$=\cos(x^2)$. Find
tl	he volume of the	solid g	generated by the c	compl	lete revolution of	R aro	ound the y-axis.		()
A.	$\sqrt{\pi}$	В.	$\frac{\sqrt{2\pi}}{2}$	C.	π	D.	2π	E.	$\sqrt{2\pi}$
47. R n	Ray consistently n ight game, what i	nakes is the j	3 out of every 5 f probability that he	ree-th e mak	nrows he shoots. tes exactly 7 of th	If he nem?	shoots 8 free-thro	ws du	aring a Friday
A.	<u>4374</u> <u>390625</u>	B.	2187 78125	C.	<u>4374</u> 78125	D.	<u>6561</u> 390625	E.	<u>34992</u> <u>390625</u>
48. L o	Let a , b and c be referred of $18c$.	eal nu	mbers such that a	c = a -	$+b+11, c^2 = a^2 +$	$-b^2$ and	nd $ab = 22$. Find	the n	umerical value
A.	3.5	B.	126	C.	-126	D.	63	E.	-63

Copyright © 2015 TMSCA

TMS	SCA 15-16 H	ISMA	A Test	9								Pa	ge 5
49. E	Evaluate $\lim_{h \to 0}$	tan (2	$\frac{\pi+h}{h}$	$-\tan(\pi)$									
A.	0		в.	-1		C.	1		D.	$\sqrt{3}$	E.	undefined	
50	$\frac{\cot^2 t}{\csc t} =$												
A.	$\sec t + \cos t$	t	B.	$\sec t - c$	cos t	C.	$\csc t - $	sin t	D.	$\csc t + \sin t$	E.	$\sec t - \sin t$	
51.7	The distances	s betv	veen t	he hash r	narks () are	equal. F	ind P +	Q + R.				
				P		+	Q	ł		R H		_	
			-3							0			
A.	-2.4		В.	-1.2		C.	1.2		D.	-3	E.	0.6	
52. F	Find the sum	of th	e serie	es to the	nearest t	en tho	ousandth	$: 7 - \frac{7^3}{6}$	$+\frac{7^5}{120}$	$-\frac{7^7}{5040}$			
A.	0.7539		В.	0.6570		C.	1.9459		D.	0.8451	E.	0.1219	
53. I	f g(x) = x -	1 and	d f(x	$(x) = x^3$, fi	and $g(f$	(x+2)	2)).						
A.	$x^3 + 6x^2 +$	12x +	8 B	$x^{3}+2$	$2x^2 + 4x$	+7	C. x^{3} -	+7 E	D. x^{3}	$+6x^{2}+12x+7$	E.	$x^3 + 3x^2 + 3$	<i>x</i> + 7
54. I	f <i>p</i> and <i>q</i> are	the z	zeros o	of the fun	ction f	(x) =	$28x^2 + x$	z - 15 the	n pq^2	$+p^2q=?$			
A.	$-\frac{15}{784}$		B.	$-\frac{15}{28}$		C.	$\frac{225}{784}$		D.	$-\frac{225}{28}$	E.	$\frac{15}{784}$	
55. 5	$5^3 + 6^3 + 7^3 +$	+1	$1^3 =$										
A.	4256		В.	4356		C.	14641		D.	14541	E.	11655	
56. I	$f \frac{7x+13}{x^2+2x-3}$	$\frac{1}{3} = \frac{1}{x}$	$\frac{4}{+3} + \frac{1}{3}$	$\frac{B}{x-1}$ then	AB = ?								
A.	7		B.	-6		C.	10		D.	-3	E.	6	
57. E r	Elisa is going nany ways c	g to m an sh	nake a e orga	short pla nize her	ylist. Sl playlist?	he is §	going to	choose 9) songs	s from a group o	of 11 s	ongs. In hov	N
A.	362,880		B.	4,435,2	00	C.	19,958	,400	D.	2,195,424,000	E.	199,584,00)0
58. F	Find AB if A	D = 2	2,348	feet. (ne	arest foc	ot)					B		
A.	4067 ft	B.	4062	ft C	. 4696	ft	D. 52	.50 ft	E.	4973 ft			
59. I	f the pattern	of th	e sequ	ience 2, 1	0, 20, 3	2, 46,	conti	nues, fin	d the 1	5 th term.	с Б	57°\ 29°\ D	► _A
А.	332		B.	262		C.	256		D.	276	E.	296	
60. T t	The odds of c ickets would	drawi l have	ng a p e to be	ink raffle removed	e ticket a l from th	at rand ne buc	lom fron ket to re	n a buck duce the	et of 3 e odds	08 tickets are 4: to 1:4?	7. Ho	w many pin	k
	10		P			G	(2		Ð		-	-	

A. 49 B. 77 C. 63 D. 47 E. 70

1. E	21. D	41. A
2. E	22. A	42. C
3. A	23. C	43. D
4. C	24. B	44. A
5. C	25. E	45. D
6. D	26. A	46. C
7. A	27. E	47. E
8. B	28. D	48. D
9. E	29. B	49. C
10. B	30. E	50. C
11. D	31. D	51. D
12. E	32. B	52. B
13. B	33. B	53. D
14. E	34. E	54. E
15. A	35. E	55. A
16. B	36. A	56. C
17. A	37. D	57. C
18. A	38. E	58. B
19. C	39. D	59. E
20. A	40. B	60. C

TMSCA 15-16 HSMA Test 9

2015-2016 TMSCA Mathematics Test Nine Select Solutions

7. $\frac{5}{\frac{1}{18} + \frac{1}{25} + \frac{1}{15} + \frac{1}{27} + \frac{1}{16}} \approx 19.1$
8. $r = \frac{b}{2}\sqrt{\frac{2a-b}{2a+b}} = \frac{7}{2}\sqrt{\frac{18-7}{18+7}} \approx 2.32$ and $C = 2\pi r \approx 2\pi\pi (2.32) \approx 14.6$
10. $A(3x-1)+B(x-8)=17x-21$. Let $x=8$ for
$24A - A = 136 - 21$ and $A = 5$. Then Let $x = \frac{1}{3}$ for
$-\frac{23B}{3} = -\frac{46}{3}$ and $B = 2$, so $AB = 10$.
11. $m\widehat{AE} = 3\left(\frac{360}{7}\right) \approx 154.3$, so the inscribed angle
that intersects the arc is $\frac{1}{2}(154.3) \approx 77$
12. There are 8! total arrangements. If the two are together, there are $2(7!)$ arrangements, so the number of arrangements without them together is $8!-2(7!) \approx 30240$.
17. If the matrix has no inverse, then the determinant of the matrix is 0, so solve the equation

 $1(5k+6)+1(10-3)+2(-4-k) = 0 \text{ for } k = -\frac{5}{3}.$ 22. $x^3 - y^3 = (x - y)(x^2 + xy + y^2) =$ 7(49+3(14)) = 637 23. The opposite angles of a quadrilateral inscribed in a circle are supplementary, so $x^2 - 12x + 3x - 10 = 180$ for x = 19 for a larger angle of 133°. 27. There are 9 letters total including 3-Es and 3-Ts, so the number of distinct arrangements will be

 $\frac{9!}{(3!)(3!)} = 10080.$

28. First, change all units to either inches or to feet. Then set-up the relationship $\cos \theta = \frac{x}{300}$. $x \sin \theta = \frac{1}{300} \left(\frac{dx}{dt} \right)$. Taking the derivative yields: $-\sin \theta \left(\frac{d\theta}{dt} \right) = \frac{1}{300} \left(\frac{dx}{dt} \right)$. Find the base of the triangle when x = 84 inches to be 288 inches, so $-\frac{288}{300} \left(\frac{d\theta}{dt} \right) = \frac{1}{300} (-2)$ and $\frac{d\theta}{dt} = \frac{2}{288} \approx 0.0069$ radians per second.

31. The constant term will be the term when the exponents of variables in the numerator and denominator are equal:

$$({}_{6}C_{2})(2x^{2})^{2}\left(-\frac{5}{x}\right)^{4} = 37500.$$

33. The center term of each row is also the mean of the row, so continue the pattern of center numbers for 3, 9, 21, 39, **63**, 93, 129, **171**... with a mean of the 4th and 7th terms $\frac{63+171}{2} = 117$.

34. Each worker can paint $\frac{1}{6}$ of a fence each hour and the new fence has four times as much area as the old fence, so the total time for the bigger fence can be

found using
$$3\left(\frac{1}{6}\right)t = 4$$
 for a time of 8 hours.

35. Completing each square

$$9(x-2)^{2} + 25(y+3)^{2} = 225 \text{ then}$$

$$\frac{(x-2)^{2}}{25} + \frac{(y+3)^{2}}{9} = 1.$$
 For an ellipse in the form

$$\frac{(x-h)^{2}}{a^{2}} + \frac{(y-k)}{b^{2}} = 1, \text{ the area of the ellipse is}$$

$$\pi ab = \pi (5)(3) = 15\pi.$$

36. The number in base 10 can be written as 36P + 6R + Q + 25R + 5P + Q - 16Q - 4R - P or 40P - 14Q + 27R.

TMSCA 15-16 HSMA Test 9

38. The number of distinct arrangements will be $_{8+4-1}C_4 = 330$.
39. All the possible lengths for the third side are: 6, 7, 8, 10, 11 , 12 , 13 , 15 , 16 , 17, 18, 19, 20, 21 and 22. But in order for the triangles to be acute, $a^2 + b^2 > c^2$, where <i>c</i> is the length of the longest side. The bold numbers in the list meet these requirements.
42. $2011_5 = 256_{10}$ which has a square root of $16_{10} = 31_5$.
43. Split the integration into
$\int_{-2}^{4} f(x) dx + \int_{-2}^{4} 3 dx = 10.5 + 18 = 28.5$
46. The smallest positive zero of the function is at $\sqrt{\frac{\pi}{2}}$,
so use shell method and evaluate the integral
$2\pi \int_0^{\sqrt{\pi/2}} x \cos\left(x^2\right) dx = \pi .$
47. Use binomial theorem for ${}_{8}C_{7}\left(\frac{3}{5}\right)^{7}\left(\frac{2}{5}\right)^{1} = \frac{34992}{390625}$
48. $(c-11)^2 = (a+b)^2$, so
$c^{2}-22c+121 = a^{2}+2ab+b^{2}$ and $-22c+121 = 2ab$ for $-22c+121 = 44$ $c = 3.5$ and $18c = 63$.
49. This is the definition of the derivative for $y = \tan x$ when $x = \pi$ which has a value of 1.
52. This is the McClaurin Series for $\sin 7 \approx 0.6570$
54. $pq^2 + p^2q = pq(p+q)$ or for a quadratic function $f(x) = ax^2 + bx + c, \left(\frac{c}{a}\right)\left(-\frac{b}{a}\right) = \left(\frac{-15}{28}\right)\left(\frac{-1}{28}\right) = \frac{15}{784}.$
57. $_{11}C_9(9!) = 19958400$.